119 research outputs found

    Preface

    Get PDF

    In the Wings: Offstage Labour in a Provincial Italian Theatre

    Get PDF
    The historical archive in Feltre (Veneto) preserves inventories of its Teatro Sociale that testify to this provincial theatre’s importance to the town and the surrounding area during the 19th century. These inventories are rare sources that have never previously been analysed. Based on these documents, this article investigates the world behind the scenes and extracts information on the staff involved in running the theatre. Offstage workers are generally forgotten on playbills and in theatre periodicals (which pay tribute to onstage artists and report the repertoire of travelling theatre companies), and they do not figure significantly in the documents of theatre companies such as contracts, correspondence and regulations. To a greater extent than other sources, these inventories provide a window onto the labour of these workers, who made a highly significant, if less visible, contribution to performances and the running of a theatre

    The role of xanthine oxidoreductase and uric acid in metabolic syndrome.

    Get PDF
    Abstract Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use

    High in vitro anti-tumor efficacy of dimeric rituximab/saporin-S6 immunotoxin

    Get PDF
    The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20+ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates

    Plants Producing Ribosome-Inactivating Proteins in Traditional Medicine

    Get PDF
    Ribosome-inactivating proteins (RIPs) are enzymes that deadenylate nucleic acids and are broadly distributed in the plant kingdom. Many plants that contain RIPs are listed in the pharmacopoeias of folk medicine all over the world, mostly because of their toxicity. This review analyses the position occupied in traditional medicine by plants from which RIPs have been isolated. The overview starts from the antique age of the Mediterranean area with ancient Egypt, followed by the Greek and Roman classic period. Then, the ancient oriental civilizations of China and India are evaluated. More recently, Unani medicine and European folk medicine are examined. Finally, the African and American folk medicines are taken into consideration. In conclusion, a list of RIP-expressing plants, which have been used in folk medicine, is provided with the geographical distribution and the prescriptions that are recommended by traditional healers. Some final considerations are provided on the present utilization of such herbal treatments, both in developing and developed countries, often in the absence of scientific validation. The most promising prospect for the medicinal use of RIP-expressing plants is the conjugation of purified RIPs to antibodies that recognise tumour antigens for cancer therapy

    Prefazione

    Get PDF

    Apoptosis and necroptosis induced by stenodactylin in neuroblastoma cells can be completely prevented through caspase inhibition plus catalase or necrostatin-1

    Get PDF
    Abstract Background Stenodactylin is a highly toxic plant lectin purified from the caudex of Adenia stenodactyla , with molecular structure, intracellular routing and enzyme activity similar to those of ricin, a well-known type 2 ribosome-inactivating protein. However, in contrast with ricin, stenodactylin is retrogradely transported not only in peripheral nerves but also in the central nervous system. Purpose Stenodactylin properties make it a potential candidate for application in neurobiology and in experimental therapies against cancer. Thus, it is necessary to better clarify the toxic activity of this compound. Study design We investigated the mechanism of stenodactylin-induced cell death in the neuroblastoma-derived cell line, NB100, evaluating the implications of different death pathways and the involvement of oxidative stress. Methods Stenodactylin cytotoxicity was determined by evaluating protein synthesis and other viability parameters. Cell death pathways and oxidative stress were analysed through flow cytometry and microscopy. Inhibitors of apoptosis, oxidative stress and necroptosis were tested to evaluate their protective effect against stenodactylin cytotoxicity. Results Stenodactylin efficiently blocked protein synthesis and reduced the viability of neuroblastoma cells at an extremely low concentration and over a short time (1 pM, 24 h). Stenodactylin induced the strong and rapid activation of apoptosis and the production of free radicals. Here, for the first time, a complete and long lasting protection from the lethal effect induced by a toxic type 2 ribosome-inactivating protein has been obtained by combining the caspase inhibitor Z-VAD-fmk, to either the hydrogen peroxide scavenger catalase or the necroptotic inhibitor necrostatin-1. Conclusion In respect to stenodactylin cytotoxicity, our results: (i) confirm the high toxicity to nervous cells, (ii) indicate that multiple cell death pathways can be induced, (iii) show that apoptosis is the main death pathway, (iv) demonstrate the involvement of necroptosis and (v) oxidative stress

    Assessing the functional and structural stability of the Met80Ala mutant of cytochrome c in dimethylsulfoxide

    Get PDF
    The Met80Ala variant of yeast cytochrome c is known to possess electrocatalytic properties that are absent in the wild type form and that make it a promising candidate for biocatalysis and bi-osensing. The versatility of an enzyme is enhanced by the stability in mixed aqueous/organic solvents that would allow poorly water-soluble substrates to be targeted. In this work, we have evaluated the effect of dimethylsulfoxide (DMSO) on the functionality of the Met80Ala cyto-chrome c mutant, by investigating the thermodynamics and kinetics of electron transfer in mixed water/DMSO solutions up to 50% DMSO v/v. In parallel, we have monitored spectroscop-ically the retention of the main structural features in the same medium, focusing on both the overall protein structure and the heme center. We found that the organic solvent exerts only minor effects on the redox and structural properties of the mutant mostly as a result of the mod-ification of the dielectric constant of the solvent. This would warrant proper functionality of this variant also under these potentially hostile experimental conditions, that differ from the physi-ological milieu of cytochrome c
    • …
    corecore