1,479 research outputs found

    Dipolar Bose gases: Many-body versus mean-field description

    Full text link
    We characterize zero-temperature dipolar Bose gases under external spherical confinement as a function of the dipole strength using the essentially exact many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies are reproduced accurately within a mean-field framework if the variation of the s-wave scattering length with the dipole strength is accounted for properly. Our calculations suggest stability diagrams and collapse mechanisms of dipolar Bose gases that differ significantly from those previously proposed in the literature

    Stability of fermionic Feshbach molecules in a Bose-Fermi mixture

    Full text link
    In the wake of successful experiments in Fermi condensates, experimental attention is broadening to study resonant interactions in degenerate Bose-Fermi mixtures. Here we consider the properties and stability of the fermionic molecules that can be created in such a mixture near a Feshbach resonance (FR). To do this, we consider the two-body scattering matrix in the many-body environment, and assess its complex poles. The stability properties of these molecules strongly depend on their centre-of-mass motion, because they must satisfy Fermi statistics. At low centre-of-mass momenta the molecules are more stable than in the absence of the environment (due to Pauli-blocking effects), while at high centre-of-mass momenta nontrivial many body effects render them somewhat less stable

    Momordica charantia, a nutraceutical approach for inflammatory related diseases

    Get PDF
    Momordica charantia, commonly called bitter melon, is a plant belonging to Cucurbitaceae family known for centuries for its pharmacological activities, and nutritional properties. Due to the presence of many bioactive compounds, some of which possess potent biological actions, this plant is used in folk medicine all over the world for the treatment of different pathologies, mainly diabetes, but also cancer, and other inflammation-associated diseases. It is widely demonstrated that M. charantia extracts contribute in lowering glycaemia in patients affected by type 2 diabetes. However, the majority of existing studies on M. charantia bioactive compounds were performed only on cell lines and in animal models. Therefore, because the real impact of bitter melon on human health has not been thoroughly demonstrated, systematic clinical studies are needed to establish its efficacy and safety in patients. Besides, both in vitro and in vivo studies have demonstrated that bitter melon may also elicit toxic or adverse effects under different conditions. The aim of this review is to provide an overview of anti-inflammatory and anti-neoplastic properties of bitter melon, discussing its pharmacological activity as well as the potential adverse effects. Even if a lot of literature is available about bitter melon as antidiabetic drug, few papers discuss the anti-inflammatory and anti-cancer properties of this plant

    In Defence of Modest Doxasticism About Delusions

    Get PDF
    Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u

    Facing the small aortic root in aortic valve replacement: Enlarge or not enlarge?

    Get PDF
    In patients with severe aortic stenosis, aortic valve replacement (AVR) should aim to implant a prosthesis of adequate size to effectively eliminate left ventricular obstruction and avoid the risk of patient–prosthesis mismatch (PPM). PPM has been demonstrated to be associated with increased mortality, decreased exercise tolerance, and reduced left ventricular mass regression after AVR for aortic stenosis

    Evidence of Luttinger liquid behavior in one-dimensional dipolar quantum gases

    Get PDF
    The ground state and structure of a one-dimensional Bose gas with dipolar repulsions is investigated at zero temperature by a combined Reptation Quantum Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid behavior emerges in a wide range of intermediate densities, evolving into a Tonks-Girardeau gas at low density and into a classical quasi-ordered state at high density. The density dependence of the Luttinger exponent is extracted from the numerical data, providing analytical predictions for observable quantities, such as the structure factor and the momentum distribution. We discuss the accessibility of such predictions in current experiments with ultracold atomic and molecular gases.Comment: 4 pages, 3 EPS figures, Revtex

    Wave Mechanics of a Two Wire Atomic Beamsplitter

    Full text link
    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to non-adiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three dimensional structure of the beam splitter, gathering quantitative information about mode-mixing, splitting ratios,and reflection and transmission probabilities

    Dipolar Bose-Einstein condensates with dipole-dependent scattering length

    Full text link
    We consider a Bose-Einstein condensate of polar molecules in a harmonic trap, where the effective dipole may be tuned by an external field. We demonstrate that taking into account the dependence of the scattering length on the dipole moment is essential to reproducing the correct energies and for predicting the stability of the condensate. We do this by comparing Gross-Pitaevskii calculations with diffusion Monte Carlo calculations. We find very good agreement between the results obtained by these two approaches once the dipole dependence of the scattering length is taken into account. We also examine the behavior of the condensate in non-isotropic traps
    • …
    corecore