651 research outputs found

    Exergetic analysis and exergy loss reduction in the milk pasteurization for Italian cheese production

    Get PDF
    The cheese industry has high energy consumption, and improvements to plant efficiency may lead to a reduction of its environmental impact. A survey on a sample of small-medium Italian cheese factories was carried out in order to assess the efficiency of heat recovery of the milk pasteurization equipment for the cheese production. Then, an exergetic analysis to calculate the related exergy loss was carried out together with a cost-benefit analysis to identify the optimized value of the heat efficiency. The exergy loss reduction was determined throughout an exergy analysis that takes into account this last value and the comparison with the previous exergy losses. Finally, the feasibility and the consequent additional reduction of exergy losses were verified, if a cogeneration heat and power (CHP) combined to the pasteurization equipment is assumed. Results show a current heat recovery efficiency of 93.2% in the Italian cheese factories; a close connection between the exergetic losses and the efficiency of the heat recovery exchanger; the optimized recovery efficiency equal to 97.3% obtained from the cost-benefit analysis; a related important exergetic loss reduction of 1245% in the heat exchangers, as a second result of the exergetic analysis; a similar reduction of the exergy loss ( 1242%) of the whole system, as a third result of the exergetic analysis; a total exergy loss reduction of 22.9 kJ kg 121milk, which corresponds to a lower environmental impact due to CO2 reduction; a further reduction of the exergy loss of 1210% when the cogeneration heat and power CHP are used

    Forrageiras de verão.

    Get PDF
    bitstream/item/79263/1/Flyer-forrageiras-de-verao-5-240112-FINAL.pd

    BRS Resteveiro: nova cultivar de inverno para solos hidromórficos.

    Get PDF
    bitstream/item/79241/1/Comunicado-291.pd

    Ergonomic Design of an Adaptive Automation Assembly System

    Get PDF
    Ergonomics is a key factor in the improvement of health and productivity in workplaces. Its use in improving the performance of a manufacturing process and its positive effects on productivity and human performance is drawing the attention of researchers and practitioners in the field of industrial engineering. This paper proposes an ergonomic design approach applied to an innovative prototype of an adaptive automation assembly system (A3S) equipped with Microsoft Kinect™ for real-time adjustment. The system acquires the anthropometric measurements of the operator by means of the 3-D sensing device and changes its layout, arranging the mobile elements accordingly. The aim of this study was to adapt the assembly workstation to the operator dimensions, improving the ergonomics of the workstation and reducing the risks of negative effects on workers’ health and safety. The case study of an assembly operation of a centrifugal electric pump is described to validate the proposed approach. The assembly operation was simulated at a traditional fixed workstation and at the A3S. The shoulder flexion angle during the assembly tasks at the A3S reduced between 18% and 47%. The ergonomic risk assessment confirmed the improvement of the ergonomic conditions and the ergonomic benefits of the A3S

    Do longer sequences improve the accuracy of identification of forensically important Calliphoridae species?

    Get PDF
    Species identification is a crucial step in forensic entomology. In several cases the calculation of the larval age allows the estimation of the minimum Post-Mortem Interval (mPMI). A correct identification of the species is the first step for a correct mPMI estimation. To overcome the difficulties due to the morphological identification especially of the immature stages, a molecular approach can be applied. However, difficulties in separation of closely related species are still an unsolved problem. Sequences of 4 different genes (COI, ND5, EF-1\u3b1, PER) of 13 different fly species collected during forensic experiments (Calliphora vicina, Calliphora vomitoria, Lucilia sericata, Lucilia illustris, Lucilia caesar, Chrysomya albiceps, Phormia regina, Cynomya mortuorum, Sarcophaga sp., Hydrotaea sp., Fannia scalaris, Piophila sp., Megaselia scalaris) were evaluated for their capability to identify correctly the species. Three concatenated sequences were obtained combining the four genes in order to verify if longer sequences increase the probability of a correct identification. The obtained results showed that this rule does not work for the species L. caesar and L. illustris. Future works on other DNA regions are suggested to solve this taxonomic issue

    Feature-based multi-class classification and novelty detection for fault diagnosis of industrial machinery

    Get PDF
    Given the strategic role that maintenance assumes in achieving profitability and competitiveness, many industries are dedicating many efforts and resources to improve their maintenance approaches. The concept of the Smart Factory and the possibility of highly connected plants enable the collection of massive data that allow equipment to be monitored continuously and real-time feedback on their health status. The main issue met by industries is the lack of data corresponding to faulty conditions, due to environmental and safety issues that failed machinery might cause, besides the production loss and product quality issues. In this paper, a complete and easy-to-implement procedure for streaming fault diagnosis and novelty detection, using different Machine Learning techniques, is applied to an industrial machinery sub-system. The paper aims to offer useful guidelines to practitioners to choose the best solution for their systems, including a model hyperparameter optimization technique that supports the choice of the best model. Results indicate that the methodology is easy, fast, and accurate. Few training data guarantee a high accuracy and a high generalization ability of the classification models, while the integration of a classifier and an anomaly detector reduces the number of false alarms and the computational time

    ENVIRONMENTAL ASSESSMENT OF AN INNOVATIVE PLANT FOR THE WASTEWATER PURIFICATION IN THE BEVERAGE INDUSTRY

    Get PDF
    Nowadays, efforts to reduce the resource depletion and environmental emissions from the anthropic activities, are mandatory for sustainable development pattern. Among the key resources to save, pure water is as important as critic due to its scarcity and its essential role for life and growth. Furthermore, during the last decades, rising attention from institutions and industries is toward solutions for the water intensity decrease and wastewater recovery. This paper proposes the environmental assessment of an innovative wastewater collection and purification plant tailored to a mid-size beverage industry aiming at locally closing the loop of the water chain, allowing its recirculation and local reuse. After the description of the functional module features, sizes and design, based on a prototype actually working in Italy, the paper follows the ISO 14040 standards to develop an environmental assessment of the industrial system, quantifying the impact rising from the manufacturing and the assembly phases
    • …
    corecore