136 research outputs found

    Mortality in kittens is associated with a shift in ileum mucosa-associated enteroccoci from E. hirae to biofilm-forming E. faecalis and adherent E. coli

    Get PDF
    Approximately ~15% of foster kittens die before 8-wks of age with most of these kittens demonstrating clinical signs or post-mortem evidence of enteritis. While a specific cause of enteritis is not determined in most cases; these kittens are often empirically administered probiotics that contain enterococci. The enterococci are members of the commensal intestinal microbiota but can also function as opportunistic pathogens. Given the complicated role of enterococci in health and disease, it would be valuable to better understand what constitutes a “healthy” enterococcal community in these kittens and how this microbiota is impacted by severe illness. In this study, we characterize the ileum mucosa-associated enterococcal community of 50 apparently healthy and 50 terminally ill foster kittens. In healthy kittens, E. hirae was the most common species of ileum mucosa-associated enterococci and was often observed to adhere extensively to the small intestinal epithelium. These E. hirae isolates generally lacked virulence traits. In contrast, non-E. hirae enterococci, notably E. faecalis, were more commonly isolated from the ileum mucosa of kittens with terminal illness. Isolates of E. faecalis had numerous virulence traits and multiple antimicrobial resistance. Moreover, attachment of E. coli to the intestinal epithelium was significantly associated with terminal illness and was not observed in any kitten with adherent E. hirae. These findings identify a significant difference in species of enterococci cultured from the ileum mucosa of kittens with terminal illness compared to healthy kittens. In contrast to prior case studies that associate enteroadherent E. hirae with diarrhea in young animals, these controlled studies identified E. hirae as more often isolated from healthy kittens and adherence of E. hirae as more common and extensive in healthy compared to sick kittens

    Characterization of BcaA, a Putative Classical Autotransporter Protein in Burkholderia pseudomallei

    Get PDF
    ABSTRACT Burkholderia pseudomallei is a tier 1 select agent, and the causative agent of melioidosis, a disease with effects ranging from chronic abscesses to fulminant pneumonia and septic shock, which can be rapidly fatal. Autotransporters (ATs) are outer membrane proteins belonging to the type V secretion system family, and many have been shown to play crucial roles in pathogenesis. The open reading frame Bp1026b_II1054 ( bcaA ) in B. pseudomallei strain 1026b is predicted to encode a classical autotransporter protein with an approximately 80-kDa passenger domain that contains a subtilisin-related domain. Immediately 3′ to bcaA is Bp11026_II1055 ( bcaB ), which encodes a putative prolyl 4-hydroxylase. To investigate the role of these genes in pathogenesis, large in-frame deletion mutations of bcaA and bcaB were constructed in strain Bp340, an efflux pump mutant derivative of the melioidosis clinical isolate 1026b. Comparison of Bp340Δ bcaA and Bp340Δ bcaB mutants to wild-type B. pseudomallei in vitro demonstrated similar levels of adherence to A549 lung epithelial cells, but the mutant strains were defective in their ability to invade these cells and to form plaques. In a BALB/c mouse model of intranasal infection, similar bacterial burdens were observed after 48 h in the lungs and liver of mice infected with Bp340Δ bcaA , Bp340Δ bcaB , and wild-type bacteria. However, significantly fewer bacteria were recovered from the spleen of Bp340Δ bcaA -infected mice, supporting the idea of a role for this AT in dissemination or in survival in the passage from the site of infection to the spleen

    YaxAB, a Yersinia enterocolitica Pore-Forming Toxin Regulated by RovA

    Get PDF
    ABSTRACT The transcriptional regulator RovA positively regulates transcription of the Yersinia enterocolitica virulence gene inv . Invasin, encoded by inv , is important for establishment of Y. enterocolitica infection. However, a rovA mutant is more attenuated for virulence than an inv mutant, implying that RovA regulates additional virulence genes. When the Y. enterocolitica RovA regulon was defined by microarray analysis, YE1984 and YE1985 were among the genes identified as being upregulated by RovA. Since these genes are homologous to Xenorhabdus nematophila cytotoxin genes xaxA and xaxB , we named them yaxA and yaxB , respectively. In this work, we demonstrate the effects of YaxAB on the course of infection in the murine model. While a yaxAB mutant (Δ yaxAB ) is capable of colonizing mice at the same level as the wild type, it slightly delays the course of infection and results in differing pathology in the spleen. Further, we found that yaxAB encode a probable cytotoxin capable of lysing mammalian cells, that both YaxA and YaxB are required for cytotoxic activity, and that the two proteins associate. YaxAB-mediated cell death occurs via osmotic lysis through the formation of distinct membrane pores. In silico tertiary structural analysis identified predicted structural homology between YaxA and proteins in pore-forming toxin complexes from Bacillus cereus (HBL-B) and Escherichia coli (HlyE). Thus, it appears that YaxAB function as virulence factors by inducing cell lysis through the formation of pores in the host cell membrane. This characterization of YaxAB supports the hypothesis that RovA regulates expression of multiple virulence factors in Y. enterocolitica

    Molecular characterization of canine BCR-ABL-positive chronic myelomonocytic leukemia before and after chemotherapy

    Get PDF
    Genetic aberrations linked to tumorigenesis have been identified in both canine and human hematopoietic malignancies. While the response of human patients to cancer treatments is often evaluated using cytogenetic techniques, this approach has not been used for dogs with comparable neoplasias. The aim of this study was to demonstrate the applicability of cytogenetic techniques to evaluate the cytogenetic response of canine leukemia to chemotherapy. Cytology and flow cytometric techniques were used to diagnose chronic myelomonocytic leukemia in a dog. High-resolution oligonucleotide array comparative genomic hybridization (oaCGH) and multicolor fluorescence in situ hybridization (FISH) were performed to identify and characterize DNA copy number aberrations (CNAs) and targeted structural chromosome aberrations in peripheral blood WBC at the time of diagnosis and following one week of chemotherapy. At the time of diagnosis, oaCGH indicated the presence of 22 distinct CNAs, of which trisomy of dog chromosome 7 (CFA 7) was the most evident. FISH analysis revealed that this CNA was present in 42% of leukemic cells; in addition, a breakpoint cluster region-Abelson murine leukemia viral oncogene homolog (BCR-ABL) translocation was evident in 17.3% of cells. After one week of treatment, the percentage of cells affected by trisomy of CFA7 and BCR-ABL translocation was reduced to 2% and 3.3%, respectively. Chromosome aberrations in canine leukemic cells may be monitored by molecular cytogenetic techniques to demonstrate cytogenetic remission following treatment. Further understanding of the genetic aberrations involved in canine leukemia may be crucial to improve treatment protocols

    Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization

    Get PDF
    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3–17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways

    Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma

    Get PDF
    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24 and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near two-fold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22% versus 40%). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly-distinct subtypes of canine hemangiosarcoma

    Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas

    Get PDF
    Identification of the genomic regions most intimately associated with non-Hodgkin's lymphoma (NHL) pathogenesis is confounded by the genetic heterogeneity of human populations. We hypothesize that the restricted genetic variation of purebred dogs, combined with the contrasting architecture of the human and canine karyotypes, will increase the penetrance of fundamental NHL-associated chromosomal aberrations in both species. We surveyed non-random aneuploidy in 150 canine NHL cases, revealing limited genomic instability compared to their human counterparts and no evidence for CDKN2A/B deletion in canine B-cell NHL. ‘Genomic recoding’ of canine NHL data into a ‘virtual human’ chromosome format showed remarkably few regions of copy number aberration (CNA) shared between both species; restricted to regions of dog chromosomes 13 and 31, and human chromosomes 8 and 21. Our data suggest that gene discovery in NHL may be enhanced through comparative studies exploiting the less complex association between CNAs and tumor pathogenesis in canine patients

    Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2

    Get PDF
    Microbial protease-mediated disruption of the intestinal epithelium is a potential mechanism whereby a dysbiotic enteric microbiota can lead to disease. This mechanism was investigated using the colitogenic, protease-secreting enteric microbe Enterococcus faecalis . Caco-2 and T-84 epithelial cell monolayers and the mouse colonic epithelium were exposed to concentrated conditioned media (CCM) from E. faecalis V583 and E. faecalis lacking the gelatinase gene ( gelE ). The flux of fluorescein isothiocyanate (FITC)-labeled dextran across monolayers or the mouse epithelium following exposure to CCM from parental or mutant E. faecalis strains indicated paracellular permeability. A protease-activated receptor 2 (PAR2) antagonist and PAR2-deficient (PAR2 −/− ) mice were used to investigate the role of this receptor in E. faecalis -induced permeability. Gelatinase (GelE) purified from E. faecalis V583 was used to confirm the ability of this protease to induce epithelial cell permeability and activate PAR2. The protease-mediated permeability of colonic epithelia from wild-type (WT) and PAR2 −/− mice by fecal supernatants from ulcerative colitis patients was assessed. Secreted E. faecalis proteins induced permeability in epithelial cell monolayers, which was reduced in the absence of gelE or by blocking PAR2 activity. Secreted E. faecalis proteins induced permeability in the colonic epithelia of WT mice that was absent in tissues from PAR2 −/− mice. Purified GelE confirmed the ability of this protease to induce epithelial cell permeability via PAR2 activation. Fecal supernatants from ulcerative colitis patients induced permeability in the colonic epithelia of WT mice that was reduced in tissues from PAR2 −/− mice. Our investigations demonstrate that GelE from E. faecalis can regulate enteric epithelial permeability via PAR2

    Carbon Monoxide and Heme Oxygenase-1 Prevent Intestinal Inflammation in Mice by Promoting Bacterial Clearance

    Get PDF
    Heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide (CO), protect against intestinal inflammation in experimental models of colitis, but little is known about their intestinal immune mechanisms. We investigated the interactions among CO, HO-1, and the enteric microbiota in mice and zebrafish

    NFIL3-Deficient Mice Develop Microbiota-Dependent, IL-12/23-Driven Spontaneous Colitis

    Get PDF
    NFIL3 (nuclear factor, IL-3 regulated) is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible, and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. Here we describe spontaneous colitis in Nfil3−/− mice. Mice lacking both Nfil3 and Il10 (NIDKO) had severe early-onset colitis, suggesting NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, as Nfil3/Rag1 double knockout (NRDKO) mice were protected from disease. However, NRDKO mice adoptively transferred with wild type CD4+ T cells developed severe colitis compared to Rag1−/− recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3−/− mice do not have colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40
    corecore