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Abstract

Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the 

general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the 

most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous 

melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential 

prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To 

address the relative paucity of information about their genomic status, molecular cytogenetic 
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analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using 

array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number 

status across the tumor genome for both of the malignant melanoma subtypes was revealed. The 

most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. 

Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 

20q15.3–17. A distinctive copy number profile, evident only in oral melanomas, displayed a 

sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. 

Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations 

of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), 

were observed. This study suggests that in concordance with what is known for human 

melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and 

initiated by different molecular pathways.
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Introduction

Melanocytes are highly motile melanin-producing cells, usually found in the basal layer of 

the epidermis. The primary function of these cells is to protect the nuclei of neighboring 

epithelial cells from UV damage, yet they can also give rise to both benign melanocytomas 

and malignant melanomas. In dogs, melanomas are the most common tumor of the oral 

cavity, 90 % of which are malignant, readily invading into normal tissue and bone, with a 

high metastatic propensity (Ramos-Vara et al. 2000; Koenig et al. 2002; Spangler and Kass 

2006; Bergman 2007). Malignant melanomas of the oral cavity are usually aggressive and 

respond poorly to standard-of-care chemotherapeutic treatments (Bergman 2007). 

Melanomas of the cutaneous epithelium are the third most common malignant skin lesion in 

dogs (Villamil et al. 2011) representing 5–11 % of all malignant melanomas (Smith et al. 

2002). There is also a debate among veterinary pathologists concerning the accuracy of 

prognostic criteria for canine malignant melanomas (Withrow et al. 2013).

Numerous retrospective studies have correlated survival with physical characteristics of the 

tumor, including anatomical site, gender, volume of tumor, and also with histological 

parameters, such as pigmentation and mitotic index (Ramos-Vara et al. 2000; Overly et al. 

2001; Kudnig et al. 2003; Spangler and Kass 2006). In a study of 122 canine melanocytic 

tumors, mitotic index and location, classical markers of malignancy, were not significantly 

correlated with survival time (Ramos-Vara et al. 2000). A subsequent study of 384 cases of 

melanocytic tumors found a significant correlation of metastasis, mitotic index, nuclear 

atypia, WHO clinical stage, and volume with decreased patient survival (Spangler and Kass 

2006). However, the same study also found that only 59 % of cases determined to be 

histologically malignant exhibited biological malignancy (metastasis or recurrence). It was 

also determined that 74 % of tumors of ‘ambiguous location’ (feet or lips) were reported 

malignant via histology, yet only 38 % of these demonstrated malignant behavior. Finally, of 

the 227 presumed benign melanocytic skin lesions, 39 % were reported as histologically 
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malignant, with 12 % exhibiting malignant behavior (Spangler and Kass 2006). This lack of 

uniformity demonstrates the need for more accurate diagnostic and prognostic markers for 

affected canine patients.

Cytogenetic studies of human melanomas have revealed that the underlying genetic 

mutations associated with these lesions differ significantly depending on the location of the 

primary tumor (Curtin et al. 2005; Blokx et al. 2010; Furney et al. 2012; Thomas et al. 

2014). It is now believed that these lesions are initiated from and subsequently develop 

through molecularly different pathways, reflecting the variation in therapeutic response 

(Bastian et al. 2003; Bauer and Bastian 2006). Cytogenetic studies also identified specific 

DNA copy number aberrations correlating with tumor malignancy, which have allowed for 

sensitive diagnostic and prognostic assays to be developed (Bauer and Bastian 2006). Assays 

have been developed using both fluorescence in situ hybridization (FISH) (Gaiser et al. 

2010) and array-based comparative genomic hybridization (aCGH) techniques (Furney et al. 

2013). Such cytogenetic studies have also allowed for the discovery of novel genes and 

pathways leading to targeted therapeutics (Xie et al. 2012).

Recent developments in the field of veterinary and comparative oncology have made it 

possible to characterize tumors through genome-wide molecular cytogenetic analysis (Breen 

2009). Genome-wide studies expedite the discovery of novel mutations and facilitate the 

development of both molecular markers and targeted therapies with the ultimate goal to 

obtain better clinical outcome. Previous investigations have identified important cancer-

related proteins in the pathogenesis of canine oral melanoma (Ritt et al. 1998; Koenig et al. 

2002; Bianco et al. 2003; Newman et al. 2011). In parallel to the observations in human 

studies, it has been hypothesized that dysregulation of comparable genes in dogs may be a 

function of aberrant gene dosage and/or functional translocation (Xie et al. 2012). However, 

no study has investigated the role of copy number aberrations in canine melanocytic lesions.

To address the lack of information in this field, the goal of this study was to characterize 

cytogenetic changes evident in canine melanocytic lesions, using oligonucleotide array 

comparative genomic hybridization array (oaCGH) and multicolor fluorescence in situ 

hybridization (FISH), and to assess the comparative value of these data by consideration of 

features shared with subtypes of human melanomas.

Materials and methods

Clinical specimens

Canine oral melanomas and benign melanocytomas were obtained with informed owner 

consent, as biopsy specimens from patients undergoing a routine diagnostic procedure. 

Samples were selected randomly with no prior knowledge of diagnostic parameters. A 

formalin-fixed paraffin-embedded (FFPE) specimen of each case was evaluated by a 

veterinary pathologist during initial diagnosis. Where the diagnostic hematoxylin and eosin 

(H&E) slide was made available (56/67 cases), the initial diagnosis was independently 

confirmed by three further board certified veterinary pathologists (SM, PL, and LB) and 

assessed for percent pigmentation, mitotic index, presence of junctional activity, and tissue 

morphology as previously described (Smedley et al. 2011). Differences in histologic 
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characteristics between melanomas and benign melanocytomas were analyzed for statistical 

significance with a two-tailed Mann–Whitney U Test.

The cohort for DNA isolation was comprised of specimens from 67 individuals; 53 were 

available to the study only as the fixed tissue specimen, 11 were available only as a snap 

frozen tumor punch biopsies, and 3 were available as both FFPE and snap frozen tumor 

tissue. The cases used for DNA isolation were comprised of 44 biopsies of primary oral 

melanomas either FFPE (n=32) or fresh frozen (n=12), 5 biopsies of cutaneous melanomas 

either FFPE (n=3) or fresh frozen (n=2), and 18 FFPE biopsies of primary cutaneous 

melanocytoma. All unfixed tumor specimens (punch biopsies) were snap frozen in liquid 

nitrogen at the time of removal and subsequently stored at −80 °C. A direct comparison of 

copy number profiles from fresh tissue and the corresponding tumor-enriched FFPE sample 

showed no difference in called aberrations, indicating that punch biopsies were not 

substantially infiltrated with non-neoplastic cells (SOM Fig. 1). As such the study used both 

snap frozen punch biopsies and FFPE derived specimens as the source of tumor DNA. A 

detailed description of the specimens used in the study is provided in Table 1.

Genomic DNA extraction

Genomic DNA was extracted from tumor punch biopsies using the Qiagen DNeasey Kit 

according to the manufacturer’s recommendations (Qiagen, German-town, MD, USA) and 

assessed for quality and quantity by spectrophotometry. Genomic DNA integrity, assessed 

by agarose gel electrophoresis, indicated little to no degradation.

Within the cohort of FFPE samples, several contained inked margins with bordering non-

neoplastic tissue. To avoid DNA from these non-neoplastic regions being present in the 

experimental sample, areas of tissue enriched for tumor were identified on a representative 

H&E-stained 5 μm slide by two veterinary pathologists (PL and LB). Three adjacent 25 μm 

sections were then obtained from each FFPE specimen and the non-neoplastic tissue was 

macro-dissected away. Genomic DNA was extracted from the remaining neoplastic regions 

using a Qiagen DNA Removal for FFPE Samples kit, according to manufacturer’s 

recommendations (Qiagen, Germantown, MD, USA), and subsequently assessed for quality 

and quantity by spectrophotometry. Genomic DNA integrity was assessed by agarose gel 

electrophoresis, indicating that while all FFPE derived specimens exhibited some degree of 

degradation, the majority of the DNA was >10 kb.

Fluorescence in situ hybridization of archival specimens

FISH was performed to detect and quantify target genomic regions, using 5 μm FFPE 

sections of the cases in the cohort. Each 5 μm FFPE section was mounted onto a charged 

glass slide and incubated at 56 °C for 18 h in a moisture-free slide chamber. Slides were then 

dewaxed by soaking in fresh xylene for 15 min, dehydrated through an ethanol series, and 

air-dried. Slides were incubated for 1 h at 37 °C in 60 mg/mL collagenase II (Sigma, Saint 

Louis, MO) in HBSS (Mediatech, Corning, NY) and then for 45 min at 37 °C in Tris-Buffer 

Saline (Boston BioProducts, Boston, MA) containing 15,000 unit/mL of Bovine Testicular 

Hyaluronidase (Sigma, Saint Louis, MO). Slides were rinsed with ultra pure water for 3 min 
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between treatments. Sections were then treated with an Abbott Paraffin Pre-treatment Kit II 

according to the manufacturer’s recommendation.

Tissue slices were assessed by FISH to evaluate the copy number of canine bacterial 

artificial chromosome (BAC) probes representing ten genes, selected to correspond to those 

identified by previous human studies of melanoma; CDKN2A, CDKN1A, PTEN, B-RAF, 

TP53, CCND1, c-MYC, c-KIT, CDK4, and RB-1. The BACs were selected from the 

CHORI-82 (https://bacpac.chori.org/library.php?id=253) library based on their genome 

position indicated in the USCS canine genome browser (http://genome.uscs.edu). To 

increase the size of the FISH signal for assessment of archival specimens, a probe pool was 

developed for each locus, comprising three overlapping BAC clones; a primary clone 

containing the gene of interest and at least one overlapping BAC clone on either side. This 

approach resulted in probe contigs for each locus, with DNA sequence extending the final 

probe size to approximately 500 kb. A summary of the BAC clones used is shown in SOM 

Table 1. To verify that each BAC pool had a unique cytogenetic location in healthy cells, all 

were first hybridized to metaphase preparations from six clinically healthy dogs, generated 

by conventional mitogen stimulation of peripheral lymphocytes (Breen et al. 1999). Single 

locus probe (SLP) multicolor FISH analysis was performed as described previously (Breen 

et al. 2004).

To establish a baseline of expected mean copy number of each probe when hybridized to 

non-neoplastic FFPE samples, each of the ten probes was first enumerated in nuclei of a 

series of 5 μm sections of FFPE specimens of healthy tissue matched controls. A minimum 

of 50 cells was imaged using a BioView Legato system (BioView, Israel) configured to 

acquire multiplane images of 19 adjacent focal planes at 0.5 μm increments. The mean copy 

number of each probe in >50 nuclei of 5 μm sections of FFPE biopsy specimens was then 

obtained using the same process and normalized to the mean of the corresponding controls. 

Classification of FISH signals as gains or losses was performed as described previously for 

human diagnostics (Gaiser et al. 2010) where the mean must be based on no fewer than 50 

separate cells and aberrant signals must be found in at least 50 % of the cell population 

analyzed.

Comparative genomic hybridization

Oligo array CGH (oaCGH) was performed by co-hybridization of tumor (test) DNA and a 

common reference DNA sample, where the latter comprised an equimolar pool of genomic 

DNA samples from multiple healthy individuals of various breeds. DNA extracted from 

FFPE samples was slightly degraded, as expected, but this was shown to have no adverse 

effect on data quality. DNA was labeled using an Agilent SureTag Labeling Kit (Agilent 

Technologies, Santa Clara, CA) with all test samples labeled with Cyanine-3-dCTP and the 

common reference sample labeled with Cyanine-5-dCTP. Fluorochrome incorporation and 

final probe concentrations were determined using routine spectrophotometric parameters 

with readings taken from a Nanodrop1000. Fluorescently labeled test and reference samples 

were co-hybridized to Canine G3 180,000 feature CGH arrays (Agilent, AMADID 025522) 

for 40 h at 65 °C and 20 rpm, as described previously (Angstadt et al. 2011; Thomas et al. 

2014). Arrays were scanned at 3 μm using a high-resolution microarray scanner (Agilent, 
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Model G2505C) and data extracted using Feature Extraction (v10.9) software. Scan data 

were assessed for quality by the ‘Quality Metrics’ report in

Agilent’s Feature extraction software (v10.5) (Agilent Technologies)

Copy number data were analyzed with NEXUS Copy Number v7.0 software (Biodiscovery 

Inc., CA, USA). Copy number aberrations (CNAs) were identified using a FASST2 

segmentation algorithm with a significance threshold of 5.5×10−6. Aberrations were defined 

as a minimum of three consecutive probes with log2 tumor: reference value of >1.14 (high 

gain), 1.13 to 0.2 (gain), −0.23 to −1.1 (loss), <−1.1 (big loss). Recurrent CNAs within each 

subtype were determined within NEXUS using an involvement threshold of 50 %. 

Significance of these regions was then determined in NEXUS using the GISTIC algorithm 

(to identify regions with a statistically high frequency of copy number aberrations over 

background) with a G-score cut off of G>1.0 and a significance of Q<0.05. Copy number 

aberration frequency comparisons amongst sample groups were performed in NEXUS using 

Fisher’s exact test with differential threshold of >50 % and significance p<0.05. Significance 

of each probe between the two groups was calculated in NEXUS using a Mann–Whitney test 

for median comparison.

Humanization of canine CGH data

Canine oaCGH data were recoded into ‘virtual’ human genome format to facilitate direct 

visual comparison of cytogenetic profiles of human and canine melanoma, as described 

previously (Thomas et al. 2011). Briefly, the genome coordinates of each of the 180,000 60-

mer canine oligonucelotides were imported into the Liftover Batch Coordinate Conversion 

Tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver), using default settings to establish the 

orthologous nucleotide sequence coordinates within the human genome sequence assembly 

(February 2009, GRCh37/hg19). Using these recoded coordinates, the tumor:reference 

signal intensity data for each array were reprocessed to output the oaCGH profile according 

to these ‘virtual’ human chromosome locations.

Clustering of oaCGH profiles

Hierarchical clustering was performed to evaluate how genome-wide CGH profiles 

differentiate between malignant and benign lesions. Hierarchical clustering using Ward’s 

method for linkage was performed on the genome-wide log2 ratio data for each sample. 

Analysis was performed using the R statistical software, version 2.13.0 (R Development 

Core Team, Vienna, Austria) using the gplots package.

Statistical analysis of oaCGH and histology profiles

Correlation analysis was performed between oaCGH clusters and the corresponding 

histological characteristics to determine if DNA CNAs were significantly associated with 

pathological cellular morphologies. Initial analysis was based on pathological diagnosis 

alone. To test molecular association, two clusters were established based on oaCGH copy 

number profiles as performed above. These two groups were then assessed for statistical 

differences between histological characteristics. A Wilcoxon rank sum test was performed 

Poorman et al. Page 6

Chromosome Res. Author manuscript; available in PMC 2017 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://genome.ucsc.edu/cgi-bin/hgLiftOver


for pigmentation and log mitotic values, and a Fisher’s exact test was performed for 

association analysis with group status and nuclear atypia.

Results

Clinical assessment

A total of 49 canine melanomas and 18 benign melanocytomas were profiled by oaCGH 

during this study. Melanomas presented from two locations: the oral cavity (n=44) and 

unspecified haired skin (n=5). Benign melanocytomas presented primarily from haired skin 

(n=13) with rare presentation from the oral cavity (n=5). Breed was not a consideration in 

case selection, and there were 29 breeds of dog included in this study, with the most frequent 

being dogs of mixed breed (n= 14), accounting for 21 % of cases. In general, melanomas 

presented with a more aggressive histologic presentation including a significantly higher 

mitotic index (p= 2.98E-06), lower percent pigmentation (p=0.0002) and higher percent 

nuclear atypia (p=3.69E-10). A detailed summary of the histopathologic findings of each 

case is presented in Table 1.

Detection of CNA by oaCGH

Individuals represented within the oral (mucosal) melanoma cohort presented with complex 

genome-wide oaCGH profiles, with numerous recurrent changes resulting in a complex 

penetrance plot (Fig. 1). In most cases, the amplitude of each aberration (data not shown) 

was modest, suggesting either a unidirectional gain or loss of one copy of a locus within the 

majority of cells of the tumor, or a high level of cellular heterogeneity within the tumor cell 

population. This was clarified by FISH analysis of copy number status within individual 

cells, which corroborated single copy aberrations (described below). Highly recurrent CNAs 

(>50 % penetrance across the cohort) were assessed in detail (Table 2), several of which 

were statistically significant between subtypes using the GISTIC algorithm (SOM Table 2). 

For the cohort of oral melanomas, the most frequent DNA copy number gain was a 600 kb 

region of dog chromosome (CFA) 30 located at CFA30:19,102,383–19,660,901 

(q=4.25E-10), along with whole chromosome gains of CFA 13, 17, 20, 29, and 36 Table 3. 

The most frequent DNA copy number losses involved the full lengths of CFA 22 and 27, as 

well as 15 and 122.5 kb segments located at CFA10:20,583,579–20,598,892 (q= 6.26E-05) 

and CFA26:30,241,704–30,306,343 (q= 1.34E-08), respectively. All genome coordinates are 

from canfam2.

Several regions of the genome had oaCGH profiles suggestive of structural changes, denoted 

by a copy number gain followed immediately by a loss, most notably on CFA 10 and CFA 

30, both of which were found to be statistically significant using the GISTIC algorithm 

(SOM Table 2). The chromosome break point region on CFA 30, evident in 60 % of the oral 

melanomas analyzed, spans 5 Mb of sequence located between 14 and 19 Mb (Fig. 2). The 

log2 values within this region of CFA 30 were suggestive of a heterozygous loss followed by 

an immediate gain, with 97 % of affected cases suggestive of a copy number of ≥4.

Cutaneous melanomas, although small in number (n=5), also presented with recurrent CNAs 

(Fig. 1). The largest and most common aberration was a gain of CFA 20 that spanned 46.2 
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Mb of the chromosome CFA20:10,929,869–57,175,686, present in four of the five cases. 

The most frequent copy number losses included a 131 kb region of CFA6:48,260,040–

49,569,575, a 385 kb region of CFA18:21,439,849–21,824,376, and the full length of 

chromosome 22. Due to the small number of cases, none of these aberrations were 

statistically significant using the GISTIC algorithm (SOM Table 2).

While individuals represented within the benign/ cutaneous melanocytoma cohort (n=18) 

presented with relatively stable oaCGH profiles, some recurrent aberrations were evident 

(Fig. 1). The most common aberration was gain of a 87 kb region of CFA27 

CFA27:9,965,501–10,052,495 (q=3.40E-13). Other common aberrations were gains on 

CFA9:20,973,038–21,556,711 (q = 4.89E-09), CFA10:48,818,794–48,878,597 

(q=3.95E-05), and CFA11:55,214,228–55,245,594 (q=4.99E-08). Melanocytomas had one 

significant recurrent copy number loss, a 200 kb region at CFA8:76,368,492–76,582,392 

(q=7.78E-04).

Comparison of melanomas to melanocytomas

A number of CNAs were either detected in one subtype only or shared between just two of 

the three subtypes (SOM Table 3). Cutaneous melanomas and melanocytomas shared several 

common recurrent aberrations, which were either rare or absent in oral melanomas, most 

significantly a 17.5 Mb region of gain at CFA20:39,655,694–57,175,686, detected in 

approximately 45 % (8/18) of melanocytomas and 80 % (4/5) of cutaneous melanomas (in 

CM q<0.01). Another notable similarity between these two groups was the presence of a 9 

Mb copy number gain between 35 and 44 Mb on chromosome 30 (Fig. 2a, c). There were no 

aberrations shared between cutaneous and oral melanomas at the 50 % differential level. 

However, when the stringency was dropped to 40 %, several shared regions became evident, 

including a 140 kb loss of CFA3:65,280,294–65,432,693 and a 260 kb gain of 

CFA13:8,127,632–8,394,801 (data not shown). Aberrations unique to one subtype were also 

evident. Deletion of a 385 kb segment of CFA18 at CFA18:21,439,849–21,824,376 was 

highly recurrent only in cutaneous melanomas and a complex copy number profile along a 

13 Mb region of CFA30 CFA30:8,290,472–21,411,530 was observed only in oral 

melanomas.

Hierarchical clustering of all melanocytic lesions

Hierarchical clustering of segmented oaCGH profiles separated the 67 samples into three 

well-defined groups (Fig. 3). One of the groups contained only malignant samples, the 

second contained malignant samples with a single benign lesion, and the third group 

contained a mix of benign (n=17) and malignant samples (n=21). The clustering of 21 

malignant samples with the benign samples is partially explained by the reduced level of 

aberrations within those particular malignant lesions.

Clusters were further evaluated by consideration of their histological characteristics, to 

identify correlation of cellular morphology with genome-wide CGH profiles. Malignant 

samples (n=21/44) that clustered with benign samples had significantly higher pigmentation 

(p=0.018), lower mitotic index (p=0.023), and a lower, but not statistically significant, 

nuclear atypia (p=0.222) than the group of malignant melanomas that clustered together 
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(n=28). These data demonstrate that molecular aberrations in canine malignant melanomas 

correlate with the cellular phenotype and histology, suggesting the potential utility of 

molecular markers to differentiate between histologically ambiguous lesions.

Detection of CNA by FISH analysis of FFPE sections

All targeted loci (n=10) evaluated by FISH analysis showed aberrant copy number in oral 

melanomas. The most frequent unidirectional changes were a gain of c-MYC (80 % of 

cases) and loss of CDKN2A (68 % of cases) and RB1 (35 % of cases). The other seven loci 

evaluated showed bidirectional changes (Fig. 4a). As expected, based on the whole genome 

oaCGH data, the extent of SLP CNAs in the benign lesions was lower (Fig. 4b). The most 

common of the targeted CNAs evident in the benign lesions were loss of TP53 and 

CDKN2A. It is important to note that these aberrations were observed only as a 

heterozygous loss, indicating the retention of one allele for production of downstream 

product (if unmutated). Interestingly, neither tumor types showed a significant copy number 

amplification of regions encompassing BRAF or CCND1, both of which are highly aberrant 

in human UV-induced cutaneous melanomas. The population of canine oral melanomas 

showed a combination of both copy number gain and loss for these gene regions, suggesting 

overall chromosome instability, but not targeted gene amplification.

Comparison of canine to human melanocytic lesions

Humanization of the canine oaCGH data allowed for direct comparison of the canine data 

collected in this study to the CNA status of human melanomas accessible from the previous 

studies. When aligned with genome wide oaCGH profiles of different subtypes of human 

melanoma, striking similarities were present between canine oral melanoma and both human 

mucosal melanoma and human acral melanoma (Fig. 5). Human mucosal and acral 

melanomas have been shown to present with more complex genome-wide oaCGH profiles 

than cutaneous melanomas (Curtin et al. 2005; Furney et al. 2012; Thomas et al. 2014), 

paralleling the data for canine melanomas in the current study. Many CNAs were shared 

between human and dog, including a characteristic complex oaCGH profile involving the 

evolutionarily conserved chromosome segments represented by human chromosome 

chr15:38,701,609–49,824,200 and canine chromosome CFA30:8,290,472–21,411,530. 

Notably, this distinct aberration was not detected in canine cutaneous melanomas or in 

human common cutaneous melanomas. Human mucosal and acral melanomas showed 

additional smaller shared aberrations (Table 4).

Discussion

Aberrations within melanomas and melanocytomas: Implications for tumorigenenesis

As with human melanomas, canine melanomas present with cytogenetically distinct profiles 

based on malignancy and the anatomic location in which they arise. The most striking 

evidence for this is the presence of a characteristic aberration of CFA 30 in oral melanomas, 

which is absent in cutaneous lesions. Melanocytomas, which are primarily cutaneous, had 

noticeably fewer aberrations than both subtypes of melanoma. However, approximately 

40 % of these were shared with cutaneous melanoma, including the recurrent copy number 

gain of CFA20:39,655,694–57,175,686, evident in cutaneous but not oral lesions (SOM 
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Table 2). These features may represent aberrations necessary for the growth of canine 

melanocytic tumors from the cutaneous epithelium and subsequent targeted investigation 

into this genomic region may elucidate tumor initiation specific to this tissue location. Along 

with significant potential for the future use of molecular differentiation as part of the 

diagnostic process, the recognition of molecular profiles provides insight into the initiation 

and development of the different subtypes of melanomas. Ultimately, this knowledge may 

lead to the development of specific treatment regimes based on the site of primary tumor 

growth.

The most recurrent aberration specific to the oral melanoma cohort was a distinctive 

complex copy number profile on CFA 30, present in 60 % of cases and characteristic of a 

structural chromosomal rearrangement. Due to the high incidence of this particular complex 

CNA, it is probable the rearrangement is significant for the development of canine oral 

melanoma or progression towards a malignant phenotype. This aberration may be of 

potential for use as a signature to differentiate between lesions that are likely to progress, 

requiring additional treatments, and those that are likely to remain benign; however, 

additional studies correlating the presence of this pattern to clinical outcome are needed. 

Further study into the cause and biological effect of the breakage may also reveal why oral 

melanomas are behaviorally more aggressive than other melanocytic subtypes. The 5 Mb 

region of genome sequence surrounding the breakage (CFA30:15–20 Mb) is within a gene 

desert, flanked by gene-rich areas. This is also a feature of unstable chromosome regions in 

the human genome, such as the breakpoint cluster region (BCR) at 22q11.23.

Within the complex region of CNA on CFA 30 are nine annotated genes, six of which 

increased in copy number while three decreased in copy number (Table 3). One gene with a 

copy number loss, SPRED1, is a known suppressor of Ras/MAP-K activation. Since deletion 

of SPRED1 can positively regulate the activation of the RAS/MAP-K pathway, this 

aberration in canine melanoma suggests a possible mechanism of tumorigenesis. The 

involvement of the MAP-K pathway is also supported by the presence of TRPM7 within the 

region of copy number gain on CFA 30. Increase in gene dosage may be associated with 

increased expression, and over-expression of TRPM7 has been shown to be involved in both 

melanoma development (Guo et al. 2012) and the regulation of the MAP-K pathway (Meng 

et al. 2013). Additionally, targeted FISH analysis of canine oral melanomas indicated copy 

number gain of both C-KIT, which initiates the RAS/MAP-K pathway, and C-MYC, which 

is downstream of the MAP-K phosphorylation cascade. Both C-MYC and C-KIT showed 

copy number gain in canine oral melanomas (80 and 65 % of cases, respectively), further 

supporting the involvement of the MAP-kinase signaling pathway in the development of 

canine oral melanomas. Previous studies have shown the activation of the MAP-K signaling 

cascade, but were unable to fully elucidate the mechanism (Angstadt et al. 2012; Fowles et 

al. 2013). Copy number gain, and subsequent overexpression, of TRPM7 and loss of 

SPRED1 may represent such a mechanism.

Aberrations detected in both malignant forms of canine melanoma, but not in 

melanocytomas, suggest that these specific mutations are associated with the development of 

these malignant and aggressive neoplasms. This was further confirmed by the high degree of 

correlation between patterns of genome-wide CNAs and cellular histology. Malignant 
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melanomas presenting with less complex oaCGH profiles (similar to those of benign lesions) 

had noticeably different cellular morphologies from those with complex copy number 

profiles. This supports the underlying molecular basis of cellular phenotype and implies that 

specific CNAs present within these particular malignant lesions give rise to a more 

malignant phenotype. Regions of shared CNA within the malignant populations contain 

numerous genes (Table 3). In light of the cellular function of the gene product, the 

evaluation of dysregulation of these genes may in turn contribute to understanding of 

malignant characteristics, including complex genome-wide CNAs, dedifferentiated cell 

morphologies, and presentation of histologically ambiguous features. For example, the most 

frequent aberration observed in both cutaneous and oral melanomas was a copy number loss 

of the segment CFA3:62,368,641–62,381,281. Within this region is the coding sequence for 

TACC3, which acts as a stabilizer of mitotic spindles during mitosis and has been proposed 

to play a role in cell differentiation.

All ten loci evaluated by FISH analysis showed aberrant copy number in canine oral 

melanomas. Seven of the loci evaluated showed a combination of gains and losses, 

suggesting that the genomic instability at these regions was more random than targeting 

functional pathway alterations. This suggestion is supported by the fact that no homozygous 

losses and few high amplification events were detected involving any of these seven loci. 

Three genes showed only unidirectional CNA among the cohort, C-MYC, RB1, and 

CDKN2A, suggesting these are not merely random CNAs due to end-stage mitotic 

instability, but rather targeted alterations advantageous to tumor development. The 

dysregulation of mRNA expression in these genes has been previously established (Ritt et al. 

1998; Koenig et al. 2002; Bianco et al. 2003). The identification of the presence of these 

CNAs now offers a mechanism by which tumor cells regulate gene expression leading to 

tumorigenesis of canine oral melanoma.

Comparison of canine copy number changes to human melanocytic lesions

Oral mucosal melanomas in humans are rare and poorly understood, representing only 2 % 

of all melanomas (Chang et al. 1998). Due to the small number of cases, limited large-scale 

genomic research has been performed and so details of the genetics of development of 

mucosal melanomas and the majority of genetic drivers remain unknown. Through clinical 

observations of similar anatomical location and behavior, it has been proposed that the 

mucosal subtype of human melanoma would be analogous to oral canine melanomas, which 

would support their use as a model system to study the development of these rare tumors. 

Curtain and colleagues first assembled cytogenetic hallmarks of human acral and mucosal 

melanoma through BAC-array CGH in 2005 (Curtin et al. 2005). Using those published data 

as a reference, we were able to directly compare CNAs reported in these forms of human 

melanoma with those identified in canine cases in the present study. The comparison 

revealed mucosal melanomas in both species to have a complex genome-wide copy number 

profile. This is suggestive of decreased genome stability and increased susceptibility to 

karyotype rearrangements, corroborated by recent whole-genome sequence data (Furney et 

al. 2012; Thomas et al. 2014). In general, the CNAs most common to canine melanoma were 

shared with those detected in human mucosal melanomas. Moreover, the canine CNAs were 

different from those evident in UV-induced human cutaneous melanomas, which also differ 
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from human mucosal melanomas. The most remarkable similarity between canine 

melanomas and their human ortholog was a conserved and complex copy number profile 

along the length of CFA 30/HSA 15. The characteristic copy number signature on HSA15 

has been reported only in mucosal and acral melanomas. We propose that this characteristic 

feature is associated with a key evolutionarily conserved mechanism of pathogenesis in the 

development and/or progression of mucosal melanomas. It was also noted that no individual 

within the canine cohort showed the characteristic BRAF amplification or associated 

CCND1 amplification commonly detected in UV-induced cutaneous melanomas in humans. 

Other notable conserved mutations are seen as a gain on CFA 13 (cf HSA chr4:70,508,745–

70,808,489), loss of CFA 4 and 11 (cf HSA chr5:50,515,301–76,556,132), and gain of CFA 

10 and 26 (cf HSA chr12:48,133,151–52,785,962). These imply that the underlying pathway 

of development in all mucosal melanomas, regardless of species, may be different to that of 

cutaneous UV-induced melanomas. They also underpin more detailed and statistically 

powerful studies of the etiology and treatment of mucosal melanomas.

Previous comparative studies of melanoma have primarily relied solely on histology and 

targeted sequencing, highlighting the dissimilarity of canine melanoma and human common 

cutaneous melanoma, and limited homology with mucosal melanomas. In agreement with 

other recent proposals (Fowles et al. 2013; Gillard et al. 2014; Simpson et al. 2014), this 

study now bolsters the burgeoning role of the dog model in investigations of pathogenesis of 

non-UV induced mucosal melanomas. The genome-wide molecular cytogenetic analysis in 

this study revealed remarkable similarities shared between human and dog mucosal 

melanomas. Pathways specific to melanogenesis of mucosal surfaces may be elucidated by a 

comparative oncology approach, with integrated the consideration of -omics data from both 

species.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BAC Bacterial artificial chromosome

BRAF V-raf murine sarcoma viral oncogene homolog B1

C-KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog

C-MYC V-myc myelocytomatosis viral oncogene homolog (avian)

CCND1 G1/S-specific cyclin-D1
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CDK4 Cyclin-dependent kinase 4

CDKN1A Cyclin-dependent kinase inhibitor 1A

CDKN2A Cyclin-dependent kinase inhibitor 2A

CFA Canis familiaris (also used as a prefix to chromosome numbers)

CNA Copy number aberration

FFPE Formalin-fixed paraffin-embedded

FISH Fluorescence in situ hybridization

H&E Hematoxylin and eosin

HSA Homo sapiens (also used as a prefix to chromosome numbers)

MAP-K Mitogen-activated protein kinases

oaCGH Oligo-array comparative genomic hybridization

PTEN Phosphatase and tensin homolog

RAS Rat sarcoma gene

RB-1 Retinoblastoma 1

SLP Single locus probe

SPRED1 Sprouty-related, EVH1 domain containing 1

TACC3 Transforming, acidic coiled-coil containing protein 3

TP53 Cellular tumor antigen p53

TRPM7 Transient receptor potential cation channel, subfamily M, member 7
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Fig. 1. 
aCGH analysis of primary canine oral melanoma (OM), primary canine cutaneous 

melanoma (CM), and canine cutaneous melanocytoma (B). Penetrance plots of recurrent 

CNAs, at 26 kb intervals, identified within 67 canine melanocytic lesions. Genomic 

locations are plotted along the x-axis, and the y-axis indicates the percentage of the three 

subtypes with copy number gain (shown in blue above the midline) or loss (shown in red 
below the midline) of the corresponding intervals along each chromosome. In oral 

melanomas (OM, n=44), the most frequent gain was located on CFA30:18,527,413–

18,592,465, along with whole chromosome gains of CFA 13, 17, 20, 29, and 36. The most 

frequent losses were found on CFA10:20,583,579–20,598, 892, CFA26:30,241,704–

30,306,343, CFA30:10,620,776–10,658,526, and all of CFA 2, 22, and 27. In cutaneous 

melanomas (CM, n=5), the largest and most common aberration was a gain of 

CFA20:10,929,869–57,175,686. In melanocytomas (B, n=18), the most frequent aberration 

was a gain of a small region of CFA27:9,965,501–10,052,495, as well as less frequent gains 

on CFA9:20,973,038–21,556,711, CFA10:48,818,794–48,878,597, and CFA11:55,214,228–

55,245,594
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Fig. 2. 
Penetrance plots of DNA copy number aberrations along the length of CFA 30 in oral 

melanomas (OM), cutaneous melanomas (CM), and melanocytomas (B). Oral melanomas 

showed a distinct pattern of copy number loss (spanning 3–18 Mb) partially overlapping a 

region of copy number gain (spanning 12–25 Mb), indicative of a variable chromosome 

breakage event. This breakage region, centered at 15–18 Mb was not present in either 

cutaneous melanomas or benign melanocytomas. Fifty percent (n=9/18) of melanocytomas 

showed a gain of two small regions at the distal end of CFA 30 (35–37 and 40–42 Mb), also 

seen in 20 % (n=1/5) of cutaneous melanomas
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Fig. 3. 
Clustering analysis of oaCGH derived genome wide DNA copy number data of 44 primary 

canine oral melanomas, five primary canine cutaneous melanomas, and 18 primary canine 

melanocytomas. Segmented oaCGH profiles were subjected to hierarchical clustering. 

Individual cases are plotted along the x-axis, with chromosomes plotted along the y-axis. 

Cases were grouped and a linage tree of relatedness schematic is drawn above. Blue, red, 

and white represent copy number gain, loss, and neutrality. The log2 ratio is represented in 

the intensity of the coloration gradient as per the inset. Colored bars above each sample 

indicate malignant (red) or benign (blue) cases. In general, cases with more complex copy 

number profiles clustered together. There were 21 malignant melanomas, each with few 

copy number aberrations, which clustered into the same bin as all but one of the benign 

lesions. Further analysis revealed that these 21 cases had histological characteristics 

significantly different from the subset of 23 malignant melanomas that clustered together 

and separately. The one benign lesion that clustered with a group of malignant lesions had 

just two whole chromosome gains, CFA 31 and X
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Fig. 4. 
SLP FISH derived copy number status of ten targeted loci in a primary canine oral 

melanoma and b canine melanocytoma. Percentage of cases with gains/losses is plotted 

above/below the y-axis. Full locus identity and location are provided in SOM Table 1. 

Canine oral melanomas showed higher percentage of cases with targeted genomic 

aberrations than benign melanocytomas, validating the oaCGH data. It also revealed targeted 

regions with unidirectional changes, suggesting their involvement in downstream pathway 

dysregulation and tumorigenesis
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Fig. 5. 
Canine oral melanoma (OM), cutaneous melanoma (CM), and benign melanocytoma (B) 

oaCGH profile data recoded as human. Canine oral melanomas (n=44), cutaneous 

melanomas (n=5), and cutaneous melanoctyomas (n=18) were recoded and output with 

human genome coordinates. This allowed for comparison to known aCGH profiles compiled 

for human melanoma subtypes. Hallmarks of human mucosal melanoma are copy number 

amplification of HSA 1q31, 4q12, 12q14, 11q13, 8q, and 6p as well as copy number loss of 

3q, 4q, 8p, 10, 11p, and 21q (Curtin et al. 2005). Similar aberrations were found within the 

canine oral melanoma population. Most notably, the breakage area on CFA 30 matches a 

similar pattern of loss followed by gain seen on HSA 15, the orthologous region on the 

human genome
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Table 3

Proposed genes involved in canine oral melanoma pathogenesis

Proposed gene Cell function

CFA 30 gain

 SLC27A2 Lipid biosynthesis and fatty acid degradation.

 HDC Converts L-histidine to histamine, associated with HDC include mast cell neoplasm.

 GABPB1 Transcription factor.

 USP8 Required for the cell to enter the S phase of the cell cycle. Also functions as a positive regulator in the Hedgehog signaling 
pathway in development and downstream signaling of activated FGFR.

 TRPM7 Kinase activity is essential for the ion channel function.

 SPPL2A Member of the GXGD family of aspartic proteases.

CFA 30 Loss

 SPRED1 Tyrosine kinase substrate that inhibits growth-factor-mediated activation of MAP kinase through C-KIT receptor signaling 
pathway.

 RASGRP1 Diacylglycerol (DAG)-regulated nucleotide exchange factor specifically activating RAS through the exchange of bound GDP 
for GTP, which activates the Erk/MAP kinase cascade.

 FAM98B Component of the tRNA-splicing ligase complex

CFA 3 loss

 FGFR3 Tyrosine-protein kinase that plays an essential role in the regulation of cell proliferation, differentiation, and apoptosis

 TACC3 Motor spindle protein that may play a role in stabilization of the mitotic spindle. This protein may also play a role in growth a 
differentiation of certain cancer cells.

 TMEM129 Multi-pass membrane protein (Potential)

 SLBP Stabilizes mature histone mRNA and could be involved in cell-cycle regulation of histone gene expression.

 FAM53A May play an important role in neural development.
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