20 research outputs found

    Vascular-targeting activity of ZD6126, a novel tubulin-binding agent

    No full text
    The tubulin-binding agent ZD6126 is a novel vascular-targeting agent in clinical development for the treatment of solid tumors. In vivo, ZD6126 is rapidly converted into N-acetylcolchinol (ZD6126 phenol). In this study, we have explored the antivascular property of N-acetylcolchinol in vitro and ZD6126 in vivo. In cell culture, N-acetylcolchinol induced rapid changes in the morphology of human umbilical vein and lung microvessel endothelial cells. Within 40 min, the compound induced endothelial cell contraction, destabilization of the tubulin cytoskeleton, induction of actin stress fibers, and membrane blebbing. These effects occurred at noncytotoxic concentrations and were rapidly reversed on removal of the drug. Nonconfluent endothelial cells were more sensitive than confluent, quiescent cells. Among different cell types, endothelial cells were the most sensitive to the induction of morphological changes, whereas smooth muscle cells were not affected. In vitro, N-acetylcolchinol rapidly disrupted a network of newly formed cords. In vivo, ZD6126 caused shut down of newly formed vessels in the Matrigel plug assay, shortly after injection. This study indicates that rapid alteration of endothelial cell morphology may be responsible for the loss of tumor blood vessel integrity, vessel shut down, and extensive tumor necrosis induced by ZD6126 in experimental tumor models

    Bioavailability of VEGF in Tumor-Shed Vesicles Depends on Vesicle Burst Induced by Acidic pH

    Get PDF
    Tumor angiogenesis is regulated by a dynamic cross-talk between tumor cells and the host microenvironment. Because membrane vesicles shed by tumor cells are known to mediate several tumor-host interactions, we determined whether vesicles might also stimulate angiogenesis. Vesicles shed by human ovarian carcinoma cell lines CABAI and A2780 stimulated the motility and invasiveness of endothelial cells in vitro. Enzyme-linked immunosorbent assay and Western blot analysis revealed relevant amounts of vascular endothelial growth factor (VEGF) and the two matrix metalloproteinases MMP-2 and MMP-9, but not fibroblast growth factor-2, contained in shed vesicles. An A2780 cell-derived clone transfected to overexpress VEGF shed the same amount of vesicles as did a control clone, but contained significantly more VEGF within the vesicles. Despite a greater amount of VEGF in vesicles of the over-expressing clone, vesicles of both clones stimulated endothelial cell motility to comparable levels, suggesting that VEGF was stored within the vesicle and was unavailable. Only following vesicle burst induced by acidic pH (a characteristic of the tumor microenvironment) was VEGF released, leading to significantly higher stimulation of cell motility. Thus, tumor-shed membrane vesicles carry VEGF and release it in a bioactive form in conditions typical of the tumor microenvironment

    CCN-Based Therapeutic Peptides Modify Pancreatic Ductal Adenocarcinoma Microenvironment and Decrease Tumor Growth in Combination with Chemotherapy

    No full text
    The prominent desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a determinant factor in tumor progression and a major barrier to the access of chemotherapy. The PDAC microenvironment therefore appears to be a promising therapeutic target. CCN2/CTGF is a profibrotic matricellular protein, highly present in the PDAC microenvironment and associated with disease progression. Here we have investigated the therapeutic value of the CCN2-targeting BLR100 and BLR200, two modified synthetic peptides derived from active regions of CCN3, an endogenous inhibitor of CCN2. In a murine orthotopic PDAC model, the two peptides, administered as monotherapy at low doses (approximating physiological levels of CCN3), had tumor inhibitory activity that increased with the dose. The peptides affected the tumor microenvironment, inhibiting fibrosis and vessel formation and reducing necrosis. Both peptides were active in preventing ascites formation. An increased activity was obtained in combination regimens, administering BLR100 or BLR200 with the chemotherapeutic drug gemcitabine. Pharmacokinetic analysis indicated that the improved activity of the combination was not mainly determined by the substantial increase in gemcitabine delivery to tumors, suggesting other effects on the tumor microenvironment. The beneficial remodeling of the tumor stroma supports the potential value of these CCN3-derived peptides for targeting pathways regulated by CCN2 in PDAC

    Inhibition of SIRT2 Potentiates the Anti-motility Activity of Taxanes: Implications for Antineoplastic Combination Therapies

    No full text
    Taxanes are potent inhibitors of cell motility, a property implicated in their antiangiogenic and antimetastatic activity and unrelated to their antiproliferative effect. The molecular mechanism of this anti-motility activity is poorly understood. In this study, we found that paclitaxel induced tubulin acetylation in endothelial and tumor cells, at concentrations that affected cell motility but not proliferation (10-8 to 10-9 M, for 4 hours). Induction of tubulin acetylation correlated with inhibition of motility but not proliferation based on a comparison of highly and poorly cytotoxic taxanes (paclitaxel and IDN5390) and tumor cell lines sensitive and resistant to paclitaxel (1A9 and 1A9 PTX22). Consistent with the hypothesis that tubulin deacetylase activity might affect cell response to the anti-motility activity of taxanes, we found that overexpression of the tubulin deacetylase SIRT2 increased cell motility and reduced cell response to the anti-motility activity of paclitaxel. Conversely, the SIRT2 inhibitor splitomicin reduced cell motility and potentiated the anti-motility activity of paclitaxel. The inhibitory effect was further potentiated by the addition of the HDAC6 inhibitor trichostatin A. Paclitaxel and splitomicin promoted translocation into the nucleus—and hence activation—of FOXO3a, a negative regulator of cell motility. This study indicates a role for SIRT2 in the regulation of cell motility and suggests that therapies combining sirtuin inhibitors and taxanes could be used to treat cell motility-based pathologic processes such as tumor angiogenesis, invasion, and metastasis
    corecore