172 research outputs found

    Weak anion-exchange hypercrosslinked sorbent in on-line solid-phase extraction-liquid chromatography coupling to achieve automated determination with an effective clean-up

    Get PDF
    A mixed-mode polymeric sorbent was on-line coupled to liquid chromatography (LC) for the first time and applied it to the selective solid-phase extract a group of pharmaceuticals in complex environmental water samples. The mixed-mode polymeric sorbent is a high-specific surface area hypercrosslinked polymer resin (HXLPP) in the form of monodisperse microspheres further modified with 1,2-ethylenediamine (EDA) moieties. These properties allows its application as a weak anion-exchange (WAX) sorbent in the on-line solid-phase extraction (SPE) coupling. The on-line SPE-LC method developed using the HXLPP-WAX sorbent was successfully applied to percolate a large volume of ultrapure (500 ml), river (250 ml) and effluent sewage (100 ml) water samples. In all the cases, the HXLPP-WAX resin provided near total recoveries of the most acidic compounds studied and clean chromatograms. This is because the ion-exchange interactions enable a washing step to be added to the SPE protocol that removes the compounds with weak acidic, neutral and basic properties from the sample matrix

    Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water

    Get PDF
    Three new hypercrosslinked polymers with hydrophilic character arising from hydroxyl moieties in their skeletons have been prepared in microsphere format and applied to the off-line solid-phase extraction (SPE) of polar compounds from water samples. For sample volumes of 1000 ml, the recoveries of various polar pesticides, such as oxamyl, methomyl, selected phenolic compounds, as well as some pharmaceuticals, were close to 90%. The HXLPP-polar polymer with the best performance characteristics was applied to real samples. Its performance was also compared to commercially available sorbents, such as LiChrolut EN (hydrophobic, hypercrosslinked), Oasis HLB (hydrophilic, macroporous) and Isolute ENV+ (hydrophilic, hypercrosslinked); the new sorbent out-performed the commercially available sorbents. The polymer was applied successfully in off-line SPE of river water samples followed by liquid chromatography and ultraviolet detection, providing a good linear range and detection limits of 0.2 μg l-1 for the majority of the compounds, with the exception of oxamyl, methomyl, guaiacol and salicylic acid where the detection limit was 0.5 μg l-1

    Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples

    Get PDF
    The synthesis of high specific surface area sorbents (HXLPP-WCX) in the form of hypercrosslinked polymer microspheres with narrow particle size distributions, average particle diameters around 6 µm, and weak cation exchange (WCX) character, is described. The WCX character arises from carboxylic acid moieties in the polymers, derived from the comonomer methacrylic acid. A novel HXLPP-WCX sorbent with an attractive set of chemical and physical properties was then used in an off-line solid-phase extraction (SPE) protocol for the selective extraction of a group of basic compounds from complex environmental samples, a priority being the clean separation of the basic compounds of interest from acidic compounds and interferences. The separation power of the new sorbent for basic pharmaceuticals was compared to two commercially available, mixed-mode sorbents, namely Oasis WCX and Strata X-CW. Under identical experimental conditions, HXLPP-WCX was found to deliver both higher capacity and better selectivity in SPE than either of the two commercially available materials. In an optimised SPE protocol, the HXLPP-WCX sorbent gave rise to quantitative and selective extractions of low µg l-1 levels of basic pharmaceuticals present in 500 ml of river water and 250 ml of effluent waste water

    Effect of the anodization voltage on the porewidening rate of nanoporous anodic alumina

    Get PDF
    A detailed study of the pore-widening rate of nanoporous anodic alumina layers as a function of the anodization voltage was carried out. The study focuses on samples produced under the same electrolyte and concentration but different anodization voltages within the self-ordering regime. By means of ellipsometry-based optical characterization, it is shown that in the porewidening process, the porosity increases at a faster rate for lower anodization voltages. This opens the possibility of obtaining three-dimensional nanostructured nanoporous anodic alumina with controlled thickness and refractive index of each layer, and with a refractive index difference of up to 0.24 between layers, for samples produced with oxalic acid electrolytes

    Hypercrosslinked materials : preparation, characterisation and applications

    Get PDF
    This review article provides an overview of hypercrosslinking technology. In particular, it covers the preparation and characterisation of hypercrosslinked materials and their applications. The synthesis section examines the different monomers, precursor polymers and reagents used to prepare hypercrosslinked materials, but also the different synthetic approaches disclosed in the literature. The various chemical modification reactions relevant to this area are also reviewed. Several examples of applications for hypercrosslinked materials are described; these applications are grouped into thematic areas such as chromatography, gas storage and the trapping of organic contaminants

    Hypercrosslinked materials

    Get PDF
    This chapter describes the chemistry of hypercrosslinked materials, and presents a description of their synthesis, defining physico-chemical features and their most important applications. The synthesis section will examine the different monomers, precursor polymers, reagents and synthetic strategies used to prepare hypercrosslinked materials. Each synthesis section also details the chemical and morphological properties of the hypercrosslinked materials and the main field of application

    Fabrication of self-ordered nanoporous alumina for optical and structural characterization

    Get PDF
    Presentem la fabricació, caracterització estructural i òptica de membranes d'alúmina nanoporosa autoordenada. Les mostres han estat fabricades per el procés de doble anodització. La morfologia de les membranes obtinguda mitjançant les diferents condicions d'anodització ha estat examinada amb un microscopi electrònic d'escombrat per tal d'estimar les seves propietats geomètriques. Les propietats estructurals estudiades mitjançant difracció de raigs X mostren que durant el procés de recuit termic, des de 600 ºC fins a 1200 ºC, l'alúmina nanoporosa ha cristal·litzat des de la fase amorfa fins a les formes gamma i alfa (cristal·lines). L'espectre de la transmissió òptica de les membranes d'alúmina porosa autoordenada va ser mesurat mitjançant un espectròmetre UV-VIS en el rang 300 - 1000 nmWe present the fabrication and optical and structural characterization of self-ordered nanoporous alumina membranes. The samples were fabricated using a two-step anodization process. The morphology of the membranes produced using different anodizing conditions was examined with a scanning electron microscope in order to estimate their geometrical properties. The structural properties studied by X-ray diffraction showed that nanoporous alumina is crystallized from amorphous phase to gamma and alpha (crystalline) forms during annealing at 600 ºC to 1200 ºC. The optical transmission spectra of the membranes were measured using a UV-VIS spectrometer in the range of 300 - 1000 nm

    Photonic stop bands in quasi-random nanoporous anodic alumina structures

    Full text link
    The existence of photonic stop bands in the self-assembled arrangement of pores in porous anodic alumina structures is investigated by means of rigorous 2D finite- difference time-domain calculations. Self-assembled porous anodic alumina shows a random distribution of domains, each of them with a very definite triangular pattern, constituting a quasi-random structure. The observed stop bands are similar to those of photonic quasicrystals or random structures. As the pores of nanoporous anodic alumina can be infiltrated with noble metals, nonlinear or active media, it makes this material very attractive and cost-effective for applications including inhibition of spontaneous emission, random lasing, LEDs and biosensors
    corecore