709 research outputs found

    Quantum deformations of D=4 Euclidean, Lorentz, Kleinian and quaternionic o^*(4) symmetries in unified o(4;C) setting

    Get PDF
    We employ new calculational technique and present complete list of classical rr-matrices for D=4D=4 complex homogeneous orthogonal Lie algebra o(4;C)\mathfrak{o}(4;\mathbb{C}), the rotational symmetry of four-dimensional complex space-time. Further applying reality conditions we obtain the classical rr-matrices for all possible real forms of o(4;C)\mathfrak{o}(4;\mathbb{C}): Euclidean o(4)\mathfrak{o}(4), Lorentz o(3,1)\mathfrak{o}(3,1), Kleinian o(2,2)\mathfrak{o}(2,2) and quaternionic o(4)\mathfrak{o}^{\star}(4) Lie algebras. For o(3,1)\mathfrak{o}(3,1) we get known four classical D=4D=4 Lorentz rr-matrices, but for other real Lie algebras (Euclidean, Kleinian, quaternionic) we provide new results and mention some applications.Comment: 13 pages; typos corrected. v3 matches version published in PL

    Quantum deformations of D=4D=4 Euclidean, Lorentz, Kleinian and quaternionic o(4)\mathfrak{o}^{\star}(4) symmetries in unified o(4;C)\mathfrak{o}(4;\mathbb{C}) setting -- Addendum

    Full text link
    In our previous paper we obtained a full classification of nonequivalent quasitriangular quantum deformations for the complex D=4D=4 Euclidean Lie symmetry o(4;C)\mathfrak{o}(4;\mathbb{C}). The result was presented in the form of a list consisting of three three-parameter, one two-parameter and one one-parameter nonisomorphic classical rr-matrices which provide 'directions' of the nonequivalent quantizations of o(4;C)\mathfrak{o}(4;\mathbb{C}). Applying reality conditions to the complex o(4;C)\mathfrak{o}(4;\mathbb{C}) rr-matrices we obtained the nonisomorphic classical rr-matrices for all possible real forms of o(4;C)\mathfrak{o}(4;\mathbb{C}): Euclidean o(4)\mathfrak{o}(4), Lorentz o(3,1)\mathfrak{o}(3,1), Kleinian o(2,2)\mathfrak{o}(2,2) and quaternionic o(4)\mathfrak{o}^{\star}(4) Lie algebras. In the case of o(4)\mathfrak{o}(4) and o(3,1)\mathfrak{o}(3,1) real symmetries these rr-matrices give the full classifications of the inequivalent quasitriangular quantum deformations, however for o(2,2)\mathfrak{o}(2,2) and o(4)\mathfrak{o}^{\star}(4) the classifications are not full. In this paper we complete these classifications by adding three new three-parameter o(2,2)\mathfrak{o}(2,2)-real rr-matrices and one new three-parameter o(4)\mathfrak{o}^{\star}(4)-real rr-matrix. All nonisomorphic classical rr-matrices for all real forms of o(4;C)\mathfrak{o}(4;\mathbb{C}) are presented in the explicite form what is convenient for providing the quantizations. We will mention also some applications of our results to the deformations of space-time symmetries and string σ\sigma-models.Comment: 10 pages. We supplement results of our previous paper by adding new o(2,2)\mathfrak{o}(2,2) and o(4)\mathfrak{o}^{\star}(4) rr-matrices needed for the complete classification of real classical rr-matrices for all four real forms of $\mathfrak{o}(4;\mathbb{C})

    Dark matter and dark energy as a effects of Modified Gravity

    Get PDF
    We explain the effect of dark matter (flat rotation curve) using modified gravitational dynamics. We investigate in this context a low energy limit of generalized general relativity with a nonlinear Lagrangian LRn{\cal L}\propto R^n, where RR is the (generalized) Ricci scalar and nn is parameter estimated from SNIa data. We estimate parameter β\beta in modified gravitational potential V(r)1r(1+(rrc)β)V(r) \propto -\frac{1}{r}(1+(\frac{r}{r_c})^{\beta}). Then we compare value of β\beta obtained from SNIa data with β\beta parameter evaluated from the best fitted rotation curve. We find β0.7\beta \simeq 0.7 which becomes in good agreement with an observation of spiral galaxies rotation curve. We also find preferred value of Ωm,0\Omega_{m,0} from the combined analysis of supernovae data and baryon oscillation peak. We argue that although amount of "dark energy" (of non-substantial origin) is consistent with SNIa data and flat curves of spiral galaxies are reproduces in the framework of modified Einstein's equation we still need substantial dark matter. For comparison predictions of the model with predictions of the Λ\LambdaCDM concordance model we apply the Akaike and Bayesian information criteria of model selection.Comment: Lectures given at 42nd Karpacz Winter School of Theoretical Physics: Ladek, Poland, 6-11 Feb 200

    Once again about quantum deformations of D=4 Lorentz algebra: twistings of q-deformation

    Full text link
    This paper together with the previous one (arXiv:hep-th/0604146) presents the detailed description of all quantum deformations of D=4 Lorentz algebra as Hopf algebra in terms of complex and real generators. We describe here in detail two quantum deformations of the D=4 Lorentz algebra o(3,1) obtained by twisting of the standard q-deformation U_{q}(o(3,1)). For the first twisted q-deformation an Abelian twist depending on Cartan generators of o(3,1) is used. The second example of twisting provides a quantum deformation of Cremmer-Gervais type for the Lorentz algebra. For completeness we describe also twisting of the Lorentz algebra by standard Jordanian twist. By twist quantization techniques we obtain for these deformations new explicit formulae for the deformed coproducts and antipodes of the o(3,1)-generators.Comment: 17 page

    Jordanian Twist Quantization of D=4 Lorentz and Poincare Algebras and D=3 Contraction Limit

    Get PDF
    We describe in detail two-parameter nonstandard quantum deformation of D=4 Lorentz algebra o(3,1)\mathfrak{o}(3,1), linked with Jordanian deformation of sl(2;C)\mathfrak{sl} (2;\mathbb{C}). Using twist quantization technique we obtain the explicit formulae for the deformed coproducts and antipodes. Further extending the considered deformation to the D=4 Poincar\'{e} algebra we obtain a new Hopf-algebraic deformation of four-dimensional relativistic symmetries with dimensionless deformation parameter. Finally, we interpret o(3,1)\mathfrak{o}(3,1) as the D=3 de-Sitter algebra and calculate the contraction limit RR\to\infty (RR -- de-Sitter radius) providing explicit Hopf algebra structure for the quantum deformation of the D=3 Poincar\'{e} algebra (with masslike deformation parameters), which is the two-parameter light-cone κ\kappa-deformation of the D=3 Poincar\'{e} symmetry.Comment: 13 pages, no figure

    Bicrossproduct construction versus Weyl-Heisenberg algebra

    Full text link
    We are focused on detailed analysis of the Weyl-Heisenberg algebra in the framework of bicrossproduct construction. We argue that however it is not possible to introduce full bialgebra structure in this case, it is possible to introduce non-counital bialgebra counterpart of this construction. Some remarks concerning bicrossproduct basis for kappa-Poincare Hopf algebra are also presented.Comment: 11 pages, contribution to the proceedings of the 7th International Conference on Quantum Theory and Symmetries (QTS7), 7-13 August 2011, Prague, Czech Republi

    Scalar field propagation in the phi^4 kappa-Minkowski model

    Full text link
    In this article we use the noncommutative (NC) kappa-Minkowski phi^4 model based on the kappa-deformed star product, ({*}_h). The action is modified by expanding up to linear order in the kappa-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the kappa-Minkowski is specifically kappa-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the kappa-deformed Minkowski spacetime, resulting in a kappa-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the kappa-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planckian energies we obtain the direction dependent kappa-modified dispersion relations. Thus our kappa-effective model for the massive scalar field shows a birefringence effect.Comment: 23 pages, 2 figures; To be published in JHEP. Minor typos corrected. Shorter version of the paper arXiv:1107.236

    Some Consideration on Shielding Effectiveness Testing by means of the Nested Reverberation Chambers

    Get PDF
    This paper evaluates the effects of test fixture isolation when using nested mode-stir chambers for conducting electromagnetic shielding measurements. The nested chamber technique is used by both government and industry to evaluate the electromagnetic attenuating properties of materials as varied as infrared sensor windows to the composites used in the hulls of new ships, EM-protection of human as well as devices. Numerical simulation by means of CST and FEKO software of different nested chambers arrangements were done. Some preliminary test measurements of designed and manufactured the small reverberation chamber were done and compare with the numerical simulation results
    corecore