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1. Introduction

In recent years due to efforts to construct quantum gravity 
characterized by noncommutative space–time structures at Planck-
ian distances [1–3], the ways in which one deforms the space–
time coordinates and space–time symmetries became important. 
A principal tool for the classification of quantum deformations is 
provided by the classical r-matrices [4–7].

In this paper we shall consider D = 4 orthogonal Lie algebras 
o(4 − k, k) (k = 0, 1, 2): for k = 0 we obtain the D = 4 Euclidean 
symmetry used in functional integration formalism and topologi-
cal considerations, for k = 1 we get the D = 4 Lorentz or D = 3 dS
Lie algebra, and the case k = 2 describes the symmetry of D = 4
space–time with neutral or Kleinian signature (−, +, −, +) used in 
two-dimensional double field theory (see e.g. [8,9]) or employed 
as D = 3 AdS Lie algebra. The main novelty of our paper con-
sists in the method of obtaining the classical r-matrices: firstly we 
shall study all quantum deformations (r-matrices) for the D = 4
complex Lie algebra o(4; C) and then by imposing suitable real-
ity conditions we shall obtain respective r-matrices for the real 
symmetries o(4 − k, k) (k = 0, 1, 2). For completeness we added to 
our considerations the Lie algebra of two-dimensional quaternionic 
group O (2; H) := O �(4) ∼= O (2, 1) ⊕ O (3) which is the fourth real 
form of O (4; C).

It should be pointed out that the knowledge of classical 
r-matrices describing deformations of space–time symmetries is 
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important in present studies of gravity models and string theory, in 
particular for the formulation of quantum-deformed field-theoretic 
models and related gravity/gauge correspondence. Since introduc-
tion in 2002 two-dimensional Yang–Baxter deformed σ -models 
[10–12] there are available techniques linking classical r-matrices 
of space–time symmetry algebras with various gravity solutions 
describing the string theory backgrounds [13–18]. In such frame-
work the classical r-matrices are useful in description of grav-
ity/gauge correspondence for the gauge sector described by non-
commutative gauge field theory [19–21,16]. The full list of quan-
tum deformations for the D = 4 Lorentz algebra, described by the 
real classical o(3, 1) r-matrices, is known already since 20 years 
([22]; see also [23]). However, an analogous classification of real 
classical r-matrices (quantum deformations) for D = 4 Euclidean 
and Kleinian1 signatures as well as for the algebra o�(4) � o(2|H)

(see e.g. [24]) have not been given.
Our new method consists in two steps:

(i) Construct the complete list of complex o(4; C) r-matrices.
(ii) Impose respective four reality conditions to get the classifica-

tion of real r-matrices for o(4 − k, k) algebras (k = 0, 1, 2) and 
for o�(4).

In present paper we perform in detail these two steps and 
present the results in explicit form. It follows from our construc-
tion which classical r-matrices are satisfying standard (homoge-

1 We point out that D = 4 Kleinian rotations o(2, 2) describe as well D = 3 AdS
algebra and D = 2 conformal algebra.
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neous) CYBE, and which are satisfying modified (nonhomogeneous) 
YBE.

The plan of our paper is the following: In Sect. 2 we consider 
complex Lie algebra o(4; C) and its four real forms. In Sect. 3 we 
provide, after the use of possible automorphisms, the complete 
list of complex o(4; C) r-matrices. In Sect. 4 we consider the real 
forms. For Lorentz signature we shall confirm the old results of 
Zakrzewski [22], for Euclidean signature we obtain one r-matrix 
with three independent parameters, for Kleinian case we have six 
r-matrices (four with 3, two with 2 and one with one parameters) 
and finally for the case o�(4) there are two r-matrices both with 3 
parameters. It should be noted that the r-matrices for o�(4) have 
been never considered. In Sect. 5 we present our plans how to ex-
tend the presented results.

2. Complex D = 4 Euclidean algebra and its real forms

In this section we describe D = 4 complex Euclidean Lie algebra 
and its real forms: Euclidean, Lorentz, Kleinian and quaternionic 
orthogonal Lie algebras2 in terms of different bases. The complex 
D = 4 Euclidean Lie algebra o(4; C) is generated by six Euclidean 
basis elements Lμν = −Lνμ ∈ o(4; C) (μ, ν = 0, 1, 2, 3) satisfying 
the relations:

[Lμν, Lλρ ] = gνλ Lμρ − gνρ Lμλ + gμρ Lνλ − gμλ Lνρ , (2.1)

where gμν is the Euclidean metric: gμν = diag (1, 1, 1, 1). The Eu-
clidean algebra o(4; C), as a linear space, is a linear envelope of 
the basis {Lμν} over C. By analogy with the Lorentz algebra it is 
convenient to introduce the following generators

Mi := −1

2
εi jk L jk , Ni := −L0i (i, j,k = 1,2,3) . (2.2)

In this notation, the defining relations (2.1) take the form:

[Mi, M j] = εi jk Mk , [Mi, N j] = εi jk Nk ,

[Ni, N j] = εi jk Mk . (2.3)

The set {Mi, Ni |i = 1, 2, 3} will be called the Cartesian basis.3

If we consider a Lie algebra with the commutation relations 
(2.3) over R then we have the compact real form o(4) := o(4; R) ∼=
o(3) ⊕ o(3) with the anti-Hermitian basis

M∗
i = −Mi , N∗

i = −Ni (i = 1,2,3) for o(4) . (2.4)

It is well-known from theory of real forms for semisimple com-
plex Lie algebras (including our case o(4; C)) that all real (non-
compact) forms can be constructed by involutive automorphisms 
of the compact form. For each such Lie algebra the compact form 
is unique (see e.g. [25]). In our case there are only three real 
non-compact forms (see e.g. [26]): the Lorentz algebra o(3, 1) :=
o(3, 1; R) ∼= sl(2; C)R , the Kleinian algebra o(2, 2) := o(2, 2; R) ∼=
o(2, 1) ⊕ o(2, 1) and the quaternionic Lie algebra o�(4) := o(2; H) ∼=
o(2, 1) ⊕ o(3). We remind that o(3) ∼= su(2), o(2, 1) ∼= sl(2; R) ∼=
su(1, 1) ∼= sp(2; R). The involutive automorphisms, which intro-
duce these non-compact forms, are defined as follows (i = 1, 2, 3; 
k = 1, 3):

2 It should be noted that the names “Euclidean” and Kleinian are used also for 
denomination of inhomogeneous Lie symmetries: rotations with translations gener-
ated by four momenta.

3 In the case of the Lorentz algebra o(3, 1) the elements {Mi} are the infinitesimal 
rotations in the space coordinate planes (xi, x j), 1 < i < j, and the elements {Ni}
(boosts) are related with rotations in the time-space coordinate planes (x0, xi), i =
1, 2, 3.
ω†(Mi) = Mi , ω†(Ni) = −Ni for o(3,1) ,

(2.5)

ω‡(Mi) = (−1)i Mi , ω‡(Ni) = (−1)i Ni for o(2,2) ,

(2.6)

ω�(M2) = M2 , ω�(Mk) = −Nk ,

ω�(N2) = N2 , ω�(Nk) = −Mk
for o�(4) .

(2.7)

The corresponding conjugations (antilinear, involutive antiautomor-
phisms) †, ‡, � are connected with the involutive automorphisms 
ω	 (	 = †, ‡, �) by the formulas:

(·)† = ω†((·)∗) , (·)‡ = ω‡((·)∗) , (·)� = ω�((·)∗) . (2.8)

Another convenient basis for the complex Euclidean algebra 
o(4; C) is called chiral (left Xi and right X̄i ) sl(2) ≡ sl(2; C) ba-
sis, defined as follows:

Xi := 1

2
(Mi + Ni) , X̄i = 1

2
(Mi − Ni) (i = 1,2,3) . (2.9)

In this basis the defining relations (2.3) look as follows:

[Xi, X j] = εi jk Xk , [ X̄i, X̄ j] = εi jk X̄k , [Xi, X̄ j] = 0 .

(2.10)

The chiral basis decomposes the complex Lie algebra o(4; C)

into a direct sum: o(4; C) = sl(2) ⊕ s̄l(2). The real forms o(4), 
o(3, 1), o(2, 2), o�(4) in this basis easy are given by the formu-
las (2.4)–(2.8) and they are as follows (i = 1, 2, 3):

X∗
i = −Xi , X̄∗

i = − X̄i for o(4) , (2.11)

X†
i = − X̄i , X̄†

i = −Xi for o(3,1) , (2.12)

X‡
i = (−1)i−1 Xi , X̄‡

i = (−1)i−1 X̄i for o(2,2) , (2.13)

X�
i = (−1)i−1 Xi , X̄�

i = − X̄i for o�(4) . (2.14)

For description of quantum deformations and in particular for the 
classification of classical r-matrices of the complex Euclidean alge-
bra o(4; C) and its real forms it is convenient to use the Cartan–
Weyl bases in both sectors of the sum o(4; C) = sl(2) ⊕ s̄l(2). Such 
basis is given by

H := −ı X3 , E± = −ı X1 ∓ X2 ,

H̄ := ı X̄3 , Ē± = ı X̄1 ∓ X̄2 (2.15)

with the non-zero defining relations:

[H, E±] = E± , [E+, E−] = 2H ,

[H̄, Ē±] = Ē± , [Ē+, Ē−] = 2H̄ . (2.16)

In the basis (2.15), (2.16) all possible real forms of o(4; C) satisfy 
the following reality conditions:

H∗ = H, E∗± = E∓,

H̄∗ = H̄, Ē∗± = Ē∓ for o(4), (2.17)

H† = −H̄, E†
± = −Ē±,

H̄† = −H, Ē†
± = −E± for o(3,1), (2.18)

H‡ = −H, E‡
± = −E±,

H̄‡ = −H̄, Ē‡
± = −Ē± for o(2,2), (2.19)

H� = −H, E�± = −E±,

H̄� = H̄, Ē�± = Ē∓ for o�(4), (2.20)
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where the conjugations ∗, †, ‡, � are determined by the equations 
(2.11)–(2.15).

3. Classical r-matrices of o(4; C)

By the definition each classical r-matrix of the complex D =
4 Euclidean Lie algebra o(4; C), r ∈ o(4; C) ∧ o(4; C), satisfy the 
classical Yang–Baxter equation (YBE):

[[r, r]] = 
 . (3.1)

Here [[·,·]] is the Schouten bracket which for any monomial skew-
symmetric two-tensors r1 = x ∧ y and r2 = u ∧ v (x, y, u, v ∈
o(4; C)) is given by4

[[x ∧ y, u ∧ v]] := x ∧ ([y, u] ∧ v + u ∧ [y, v])
− y ∧ ([x, u] ∧ v + u ∧ [x, v])

= [[u ∧ v, x ∧ y]]
(3.2)

and 
 is the o(4; C)-invariant element, 
 ∈ (
3∧ o(4; C))o(4;C)

5:


 = γ 
(sl(2)) + γ̄ 
(s̄l(2))

= γ E+ ∧ H ∧ E− + γ̄ Ē+ ∧ H̄ ∧ Ē− (3.3)

in the basis (2.16).
Since the Lie algebra o(4; C) is the direct sum, o(4; C) = sl(2) ⊕

s̄l(2), and o(4; C) ∧ o(4; C) = sl(2) ∧ sl(2) ⊕ s̄l(2) ∧ s̄l(2) ⊕ sl(2) ∧
s̄l(2) therefore the r-matrix r has the following decomposition:

r = a + ā + b , (3.4)

where a ∈ A := sl(2) ∧ sl(2), ā ∈ Ā := s̄l(2) ∧ s̄l(2), b ∈ B := sl(2) ∧
s̄l(2). Substituting the decomposition (3.4) in the bilinear equation 
(3.1) and collecting homogeneous terms we obtain the system of 
equations:

[[a, a]] = γ E+ ∧ H ∧ E− , (3.5)

[[ā, ā]] = γ̄ Ē+ ∧ H̄ ∧ Ē− , (3.6)

[[b, b]] = −2[[a, b]] − 2[[ā, b]] . (3.7)

From the first two equations (3.5) and (3.6) we see that the com-
ponents a and ā of the classical r-matrix (3.4) are the classical 
r-matrices and therefore in order to get the total list of the classi-
cal r-matrices of o(4; C) we need first to take all solutions of the 
equations (3.5), (3.6) and then to solve the consistency conditions 
(3.7).

Sectors A, Ā, A ⊕ Ā. Let us write down all classical r-matrices 
of the sectors A, Ā and A ⊕ Ā. It is well-known that up to iso-
morphism there are only two classical r-matrices for sl(2): the 
standard one and the Jordanian type (see e.g. [27]) and therefore 
for the sectors A, Ā we get

a0 = γ E+ ∧ E− , a+ = χ E+ ∧ H (for Sector A) , (3.8)

ā0 = γ̄ Ē+ ∧ Ē− , ā+ = χ̄ Ē+ ∧ H̄ (for Sector Ā) . (3.9)

Here the two-tensors a0 and ā0 are the standard r-matrices which 
satisfy the non-homogeneous YBEs (3.5) and (3.6) with γ , γ̄ 
= 0, 
and the two-tensors a+ and ā+ are the r-matrices of the Jorda-
nian type, which satisfy the homogeneous YBEs (3.5) and (3.6)
with γ , γ̄ = 0. In general case the parameters γ , γ̄ and χ , χ̄

4 For general polynomial (a sum of monomials) two-tensors r1 and r2 one can 
use the bilinearity of the Schouten bracket.

5 It means that [
2(x), 
] = 0 for ∀x ∈ o(4; C), where 
(·) is the primitive co-
product in o(4; C).
are complex numbers however parameter χ (analogously χ̄ ) can 
be removed by the “rescaling” isomorphism: ϕ(E+) = χ−1 E+ , 
ϕ(E−) = χ E− , ϕ(H) = H . It should be noted also that any lin-
ear combination of the standard and Jordanian r-matrices, a0 and 
a+ (analogously for ā0 and ā+) is also a classical r-matrix and 
it can be reduced to a0 (ā0) by a sl(2)-automorphism. Indeed, 
it is easy to see that the linear mapping: ϕ(E+) = E+ , ϕ(E−) =
E− − χ2 E+ + 2χ H , ϕ(H) = H − χ E+ , is the isomorphism, that is 
[ϕ(E+), ϕ(E−)] = 2ϕ(H), [ϕ(H), ϕ(E±)] = ±ϕ(E±), and we have 
ϕ(E+) ∧ ϕ(E−) = E+ ∧ E− + χ E+ ∧ H .

Since [[a, ̄a]] = 0 therefore a sum of the classical r-matrices 
from the sectors A and Ā is also a classical r-matrix and we have 
the following four classical r-matrices in Sector A ⊕ Ā:

a0 + ā0, a0 + ā+, a+ + ā0, a+ + ā+. (3.10)

Sector B . Now we consider the sector B := sl(2) ∧ s̄l(2). We an-
alyze two cases: (i) when [[b, b]] = 0 and (ii) if [[b, b]] 
= 0.
(i) Case [[b, b]] = 0. Let [[b, b]] = 0, namely, b is a classical trian-
gular r-matrix,6 then [[a, b]] = 0, [[ā, b]] = 0, simultaneously. It is 
easy to see that arbitrary element of the sector B has the form

b = β+E+ ∧ (β̄+ Ē+ + β̄0 H̄ + β̄− Ē−)

+ β0 H ∧ (β̄ ′+ Ē+ + β̄ ′
0 H̄ + β̄ ′− Ē−)

+ β−E− ∧ (β̄ ′′+ Ē+ + β̄ ′′
0 H̄ + β̄ ′′− Ē−) .

(3.11)

It should be noted that each of three terms on the right side in 
(3.11) is a classical r-matrix.

We substitute the expression (3.11) in the classical Yang–Baxter 
equation [[b, b]] = 0. As a result we obtained that the expression 
(3.11) is a classical r-matrix if and only if it has the form

b = (β+E+ + β0 H + β−E−) ∧ (β̄+ Ē+ + β̄0 H̄ + β̄− Ē−) . (3.12)

Each components of this two-tensor, for instance the first com-
ponent (β+ E+ + β0 H + β−E−) can be reduced to the generator H
or E+ by a sl(2)-automorphism. Indeed, let us consider the case 
when D := β2

0 + 4β+β− 
= 0. We set ϕ(H) = D− 1
2 (β+E+ + β0 H +

β−E−), ϕ(E+) = β ′+E+ + β ′
0 H + β ′−E− , ϕ(E−) = β ′′+E+ + β ′′

0 H +
β ′′−E− . Substituting this ansatz in the system of equations

[ϕ(H), ϕ(E±)] = ±ϕ(E±), [ϕ(E+), ϕ(E−)] = 2ϕ(H), (3.13)

we find the coefficients (β ′)’s and (β ′′)’s. The final result is given 
by the formulas:

ϕ(H) = 1√
D

(
β+E+ + β0 H + β−E−

)
,

ϕ(E+) = χ√
D

(
β0 + √

D

2
E+ − 2β−H − 2β2−

β0 + √
D

E−

)
, (3.14)

ϕ(E−) = 1

χ
√

D

(
−2β2+

β0 + √
D

E+ − 2β+H + β0 + √
D

2
E−

)
,

where χ is a non-zero rescaling parameter, D := β2
0 + 4β+β− 
= 0

and if β+β− = 0 then 
√

D = β0.
Now we consider the case when β2

0 + 4β+β− = 0 in the first 
component of the left side of (3.12). In this case we set the fol-
lowing ansatz: ϕ(E+) = χ(β+E+ +β0 H +β−E−), ϕ(H) = β ′+E+ +
β ′

0 H + β ′−E− , ϕ(E−) = β ′′+E+ + β ′′
0 H + β ′′−E− . Again, substituting 

these expressions in the system (3.13) we find that the desired au-
tomorphism is given as follows

6 A classical r-matrix satisfying the homogeneous YBE is called triangular.
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ϕ(E+) = 1

κβ+ − β−
(β+E+ + β0 H + β−E−) ,

ϕ(E−) = 1

κβ+ − β−
(β−E+ + κβ0 H + β+E−) , (3.15)

ϕ(H) = 1

κβ+ − β−

(
−β0

2
E+ + (κβ+ + β−) H − κβ0

2
E−

)
,

where κ equals to +1 or −1, and if β+ = ±β− we take κ = ∓1
accordingly in order to avoid singularities in these formulas.

Hence we obtain that the general six-parameter classical 
r-matrix (3.12) by sl(2)-automorphims is reduced to four inde-
pendent classical r-matrices:

b++ = χ ′E+ ∧ Ē+, b+0 = χ ′′E+ ∧ H̄,

b0+ = χ̄ ′′H ∧ Ē+, b00 = ηH ∧ H̄, (3.16)

where parameters χ ′ , χ ′′ , χ̄ ′′ and η are arbitrary complex num-
bers, and moreover if χ ′, χ ′′, χ̄ ′′ 
= 0 they are rescaling param-
eters. For construction of general classical r-matrices (3.4) we 
need to know “overlaps” (Schouten brackets) between the classical 
r-matrices (3.8), (3.9) and the Abelian r-matrices (3.16). The result 
of such calculation for (3.8) and (3.16) is described as follows:

[[a0, b++]] = −2γχ ′E+ ∧ H ∧ Ē+ , [[a0, b0+]] = 0 ,

[[a0, b+0]] = −2γχ ′′E+ ∧ H ∧ H̄ , [[a0, b00]] = 0 ,

[[a+, b0+]] = −χχ̄ ′′E+ ∧ H ∧ Ē+ , [[a+, b++]] = 0 ,

[[a+, b00]] = −χηE+ ∧ H ∧ H̄ , [[a+, b+0]] = 0 .

(3.17)

In order to find the overlaps between the classical r-matrices (3.9)
and (3.16) we can use the involutive o(4; C)-automorphism �
(� 2 = 1): �(H) = H̄ , �(E±) = Ē± . Applying � to the formu-
las (3.17) it is easy to find that:

[[ā0, b++]] = 2γ̄ χ ′E+ ∧ Ē+ ∧ H̄ , [[ā0, b+0]] = 0 ,

[[ā0, b0+]] = 2γ̄ χ̄ ′′H ∧ Ē+ ∧ H̄ , [[ā0, b00]] = 0 ,

[[ā+, b+0]] = χ̄χ ′′E+ ∧ Ē+ ∧ H̄ , [[ā+, b++]] = 0 ,

[[ā+, b00]] = χ̄ηH ∧ Ē+ ∧ H̄ , [[ā+, b0+]] = 0 .

(3.18)

The sums of r-matrices a’s and b’s in (3.17) and (3.18), the overlaps 
of which are equal to zero, satisfy the equation system (3.5)–(3.7). 
These r-matrices are given by

a0 + b00, a0 + b0+, a+ + b+0, a+ + b++, (3.19)

ā0 + b00, ā0 + b+0, ā+ + b0+, ā+ + b++. (3.20)

Comparing the solutions (3.19) and (3.20) we see that there are 
additional classical r-matrices which are sums of three monomial 
classical r-matrices of type a, ā and b:

a0 + ā0 + b̄00, a0 + ā+ + b0+,

a+ + ā0 + b+0, a+ + ā+ + b++. (3.21)

(ii) Case [[b, b]] 
= 0. If a classical r-matrix ri = ai + �kbk , where 
ai is one of (3.10), and bk are the classical r-matrices (3.16) then 
the compatibility condition (3.7) reduces to the equation for the 
overlaps: �k<k′ [[bk, bk′ ]] = −�k[[ai, bk]], where the overlaps at the 
right are known already ((3.17) and (3.18)), and we should calcu-
late the overlaps at the left. This result is given by
[[b++, b00]]=−χ ′ηE+ ∧ H ∧ Ē+ − χ ′ηE+ ∧ Ē+ ∧ H̄ ,

[[b++, b0+]]= 0 , [[b++, b+0]] = 0 ,

[[b0+, b00]]= 0 , [[b0+, b00]] = 0 ,

[[b+0, b0+]]=χ ′′χ̄ ′′E+ ∧ H ∧ Ē+ + χ ′′χ̄ ′′E+ ∧ Ē+ ∧ H̄ .

(3.22)

Combining these formulas with ((3.17) and (3.18)) we obtain two 
more classical r-matrices:

a0(γ ) − ā0(γ ) − 2 b00(γ ) + b++(χ),

a+(χ) + ā+(χ) − b0+(χ) + b+0(χ). (3.23)

Here in the r-matrices a’s, ā’s and b’s (see (3.8), (3.9) and (3.16)) 
we denote an explicit dependence on the parameter of deforma-
tion.

It should be noted that to the second solution (3.23) we can 
add the term b++(χ ′) because the overlaps of this term with all 
terms of this solution are equal to zero. However this new solu-
tion is connected with the initial one by the automorphism which 
was used in the text before the formulae (3.10). Moreover for 
the analysis of the case [[b, b]] 
= 0 it is necessary also to take 
into account the basis monomials b−−(:= χ E− ∧ Ē−), b−+ , b+− , 
b−0, b0− . This consideration gives a r-matrix which is obtained 
from the first solution (3.23) with b++(χ) replaced by b−−(χ) but 
such new r-matrix is converted to the initial one by the simple 
sl(2)-automorphisms.

Thus using sl(2)-grading structure of the general classical 
r-matrix ansatz (3.4) for the complex Lie algebra o(4; C) we found 
modulo sl(2)-automorphisms 26 classical r-matrices – the solu-
tions of the classical YBE (3.1). These solutions are given by the 
expressions (3.8)–(3.10), (3.16), (3.19)–(3.21) and (3.23). It is easy 
to see that the solutions (3.8)–(3.10), (3.16), (3.19)–(3.20) can be 
considered as particular cases of the r-matrices (3.21) if some 
of their deformation parameters are put equal to zero. As a re-
sult we have four three-parameter, one two-parameter and one 
one-parameter r-matrices that are described in explicit forms as 
follows:

r1(γ , γ̄ , η)=γ E+ ∧ E− + γ̄ Ē+ ∧ Ē− + η H ∧ H̄,

r2(γ , χ̄ , χ̄ ′′)=γ E+ ∧ E− + χ̄ Ē+ ∧ H̄ + χ̄ ′′H ∧ Ē+,

r3(γ̄ ,χ,χ ′′)= γ̄ Ē+ ∧ Ē− + χ E+ ∧ H + χ ′′E+ ∧ H̄,

r4(χ, χ̄ ,χ ′)=χ E+ ∧ H + χ̄ Ē+ ∧ H̄ + χ ′E+ ∧ Ē+,

r5(γ ,χ ′)=γ
(

E+ ∧ E− − Ē+ ∧ Ē− − 2H ∧ H̄
) + χ ′E+ ∧ Ē+,

r6(χ)=χ(E+ + Ē+) ∧ (H + H̄).

(3.24)

Here all parameters γ , γ̄ , η, χ , χ̄ , χ ′ , χ ′′ , χ̄ ′′ are arbitrary com-
plex numbers and they are independent in different r-matrices. It 
should be noted that the classical r-matrices r2 and r3 are con-
nected by the involutive o(4; C)-automorphism � : �(r2(γ , χ̄ ,

χ̄ ′′)) = r3(γ , χ̄ , χ̄ ′′), and moreover the rest classical r-matrices ri
(i = 1, 4, 5, 6) are mapped onto themselves by the involutive auto-
morphism � .

Further we consider anti-Hermitian classical r-matrices for all 
o(4; C) real forms: Euclidean, Lorentz, Kleinian and quaternionic.

4. Classical r-matrices of the o(4; C) real forms

It should be noted that for any classical r-matrix r, r	 (	 =
∗, †, ‡, �) is again a classical r-matrix. Moreover, the conjugations 
(anti-involutions) 	 retain the decomposition (3.1), i.e. r	 = a	 +
ā	 + b	 , where a	 ∈ A, ā	 ∈ Ā, b	 ∈ B for 	 = ∗, ‡, �, and a	 ∈ Ā, 
ā	 ∈ A, b	 ∈ B for 	 = †. All r-matrices (3.24) are skew-symmetric, 
i.e. r21 = −r12 (i = 1, . . . , 6), and further if the universal R-matrix 
i i
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Rr of the quantum group corresponding to a real classical r-matrix 
r is unitary then r should be anti-Hermitian, i.e. r	 = −r. In addi-
tion we shall assume that the anti-involutions 	 in (3.24) are lifted 
to the tensor product o(4; C) ⊗ o(4; C) by the “flip”: (x ⊗ y)	 =
y	 ⊗ x	 .

Let us describe in detailed all real classical r-matrices for all 
real forms of o(4; C).

1). Classical r-matrices of the real Euclidean algebra o(4). 
From (3.8)–(3.10), (3.16), (3.19)–(3.21) and (3.23) we see that only 
the r-matrices

a0(iγ ), ā0(iγ̄ ), a0(iγ ) + ā0(iγ̄ ), b00(η),

a0(iγ ) + b00(η), ā0(iγ̄ ) + b00(η), (4.1)

a0(iγ ) + ā0(iγ̄ ) + b00(η)

are anti-Hermitian with respect to the Euclidean conjugation (∗)
for the real parameters γ , γ̄ , η. All these classical r-matrices are 
described by one ∗-anti-Hermitian three-parameter r-matrix:

r(γ , γ̄ , η) = iγ E+ ∧ E− + iγ̄ Ē+ ∧ Ē− + η H ∧ H̄ (4.2)

with the real parameters γ , γ̄ , η.
The r-matrix (4.2) can be used for the deformations of S3 and 

S2 × S2 σ -models and for considering their deformed instanton 
solutions. We add that the compact spheres S3 and S2 × S2 occur 
also as the internal manifolds in D ≥ 6 string theories.

2). Classical r-matrices for the Lorentz algebra o(3, 1). 
From (3.8)–(3.10), (3.16), (3.19)–(3.21) and (3.23) we see that the 
r-matrices

a0(γ ) + ā0(γ
∗), b++(iχ ′), b00(iη),

a0(γ ) + ā0(γ
∗) + b00(iη), a+(χ) + ā+(χ) + b++(iχ ′),

a0(iβ) − ā0(iβ) − 2 b00(iβ) + b++(iχ ′),
a+(χ) + ā+(χ) − b0+(χ) + b+0(χ),

(4.3)

are anti-Hermitian with respect to the Lorentz conjugation (†) for 
the real parameters χ, χ ′, β and the complex parameter γ (γ ∗ is 
the complex conjugation of γ ). All these solutions are generated by 
the system of four †-anti-Hermitian r-matrices given as follows:

r1(χ) = χ(E+ + Ē+) ∧ (H + H̄),

r2(χ,χ ′) = χ(E+ ∧ H + Ē+ ∧ H̄) + iχ ′E+ ∧ Ē+,

r3(α,β,η) = (α + iβ) E+ ∧ E− + (α − iβ)Ē+ ∧ Ē− + iη H ∧ H̄,

r4(β,χ ′) = iβ
(

E+ ∧ E− − Ē+ ∧ Ē− − 2H ∧ H̄
) + iχ ′E+ ∧ Ē+,

(4.4)

where all arbitrary parameters α, β, χ, χ ′, η are real. This result 
coincides completely with the Zakrzewski’s result [22] obtained by 
another method and presented in the sl(2, C)-realification basis of 
the Lorentz algebra o(3, 1).

The r-matrices (4.4) can be employed for the deformations of 
D = 4 relativistic symmetries as well as D = 3 de Sitter (dS) or 
D = 3 hyperbolic (H3) σ -models.

3). Classical r-matrices for the Kleinian algebra o(2, 2). It 
is easy to see that all classical r-matrices (3.24) are anti-Hermitian 
with respect to the Kleinian conjugation (‡) for all real parame-
ters γ , γ̄ , χ, χ̄ , χ ′, χ ′′, χ̄ ′′, η. We add that some choices of these 
r-matrices used as deformations of AdS3 were described by Balles-
teros et al. [28–30] mostly with the employments of Drinfeld dou-
ble structures (see [31]).

The classical r-matrices for the Kleinian algebra o(2, 2) are 
deforming D = 3 AdS geometry and can be used for the intro-
duction of YB σ -models describing the deformations of string 
models with target spaces AdS3 × S3 (D = 6; see [32,33]) and 
AdS3 × S3 × S3 × T 1 or AdS3 × S3 × T 4 (D = 10; see [34–36]).

4). Classical r-matrices for the quaternionic algebra o�(4). 
It is easy to see that all anti-Hermitian classical r-matrices with 
respect to the quaternionic conjugation (�) are generated by the 
system:

r1(γ , γ̄ , η) = γ E+ ∧ E− + iγ̄ Ē+ ∧ Ē− + iη H ∧ H̄,

r2(γ̄ ,χ,χ ′′) = iγ̄ Ē+ ∧ Ē− + χ E+ ∧ H + iχ ′′E+ ∧ H̄,
(4.5)

where all parameters γ , γ̄ , η, χ , χ ′′ are arbitrary real numbers.
The r-matrices (4.5) can be used for the construction of YB 

σ -models for strings with target spaces AdS2 × S2 (D = 4; see [37,
32]), AdS2 × S2 × S2 (D = 6; see [35]) and AdS2 × S2 × T 6 (D = 10; 
see [34,35]).

5. Outlook

The aim of this paper was to construct all classical r-matrices 
for the D = 4 complex Lie algebra o(4; C) and its real forms: 
Euclidean o(4), Lorentz o(3, 1), Kleinian o(2, 2) and quaternionic 
o�(4) Lie algebras. For o(4; C) we found up to sl(2)-automorphisms 
a total list consisting of 26 classical r-matrices. This result was 
presented in the form of four three-parameter, one two-parameter 
and one one-parameter r-matrices. Employing reality conditions 
we obtained the classical r-matrices for all possible real forms 
of o(4; C): compact Euclidean o(4), non-compact Lorentz o(3, 1), 
non-compact Kleinian AdS3 ∼= o(2, 2) and non-compact quater-
nionic o�(4) Lie symmetries. For o(3, 1) we get known four classi-
cal D = 4 Lorentz r-matrices, but for other real forms we provide 
new results for triangular as well as nontriangular case.7 We can 
show also that for each real form the corresponding obtained 
list of the classical r-matrices is complete up to inner automor-
phisms.

The next step is to obtain explicit quantizations of the given re-
sults in the spirit of our paper [38]. We plan to construct the com-
plete list of classical r-matrices for the D = 4 complex inhomo-
geneous Euclidean algebra E(4; C) := io(4; C) := o(4; C) � T(4; C)

(orthogonal rotations together with translations) and its real forms 
o(4 − k, k) � T(4 − k, k; R) for k = 0, 1, 2.

Until present time the most complete results for o(3, 1) �
T(3, 1) were obtained by Zakrzewski [39], who provided almost 
complete list of 21 real D = 4 Poincaré r-matrices. It should be 
noticed that the complete classifications of r-matrices for D = 3
both Poincaré and Euclidean algebras have been given in [40].

Recently in [41,42] the present authors complexified Zakrzewski 
results and then imposed D = 4 Euclidean reality constraints. It 
appeared that 8 out of 21 complexified Zakrzewski r-matrices are 
consistent with the Euclidean conjugation (see (4.2)). It can be 
shown, however, that the complexified Zakrzewski r-matrices do 
not describe all r-matrices for E(4; C).8

We add that in [41,42] we considered also the N = 1 superex-
tension of Poincaré and Euclidean classical r-matrices. Recently we 
derived in analogous way also new class of N = 2 Poincaré and 
Euclidean supersymmetric r-matrices (see [43]). We hope, how-
ever, that our constructive method can be used to provide a com-

7 Nontriangular r-matrices depend on the parameters γ and γ̄ which occur in 
the formulae (3.1) and (3.3).

8 In particular one can argue that the list of the real r-matrices for o(2, 2) �
T(2, 2) is longer then the Zakrzewski list for the D = 4 Poincaré algebra.
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plete list of the r-matrices for the complex inhomogeneous al-
gebra E(4; C), for its real forms, and then it can be applied to 
N-extended Euclidean superalgebras E(4|N; C) (in particular for 
physically important cases N = 1, 2, 4 containing for N = 2, 4 the 
central charges). The final aim is to classify the N-extended su-
persymmetric r-matrices for all corresponding supersymmetrized 
real forms. We add that such superextension is necessary if we 
consider the deformations of D = 10 critical superstring, reduced 
further to D = 4.
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