40 research outputs found

    The continued ageing of people with AIDS in Italy: recent trend from the national AIDS Registry

    Get PDF
    Introduction. In industrialized countries, the availability of highly active antiretroviral  therapy (HAART) caused a slow but substantial ageing of the AIDS epidemic mainly  due to the longer survival of persons with HIV/AIDS which has turned HIV into a manageable, chronic disease. The number of older people with AIDS is growing in many  European countries.We described the impact of AIDS among persons aged 50 years or more in Italy and  compared the characteristics of these cases with those of persons diagnosed with AIDS  at an age younger than 50. Methods. The source of data was the Italian AIDS Registry, from 1982 to 2011. We  defined “older” persons those aged 50 years or more, and younger individuals those aged  less  than  50  years.  We  built  two  multivariate  logistic  regression  models:  the  first  one  to identify factors associated with being older, and the second one to identify AIDS-defining diseases correlated with being older. Variables with a P value of < 0.05 were  entered in the model.Results. Of the total AIDS cases, 10.5% were among persons older than 49 years. This  proportion progressively increased from 0.0% in 1983 to 26.4% in 2011. Among older  cases, the incidence of AIDS was 2.0 per 100 000 residents in 1996, then decreased  to 1.4 per 100 000 in 2000 and levelled off around 1 per 100 000 residents until 2011.  Compared to younger cases, older cases were more frequently males, Italians, diagnosed  with AIDS in recent years, residing in Northern or Central Italy, non-injecting drug users, and late testers. Discussion. These findings stress the need for physicians to consider carefully the possibility of HIV infection among older individuals not to miss the opportunity to deliver  prevention messages, offer HIV testing, and make an early diagnosis.  

    Assessing COVID-19-Related Excess Mortality Using Multiple Approaches—Italy, 2020–2021

    Get PDF
    Introduction: Excess mortality (EM) is a valid indicator of COVID-19’s impact on public health. Several studies regarding the estimation of EM have been conducted in Italy, and some of them have shown conflicting values. We focused on three estimation models and compared their results with respect to the same target population, which allowed us to highlight their strengths and limitations. Methods: We selected three estimation models: model 1 (Maruotti et al.) is a Negative-Binomial GLMM with seasonal patterns; model 2 (Dorrucci et al.) is a Negative Binomial GLM epidemiological approach; and model 3 (Scortichini et al.) is a quasi-Poisson GLM time-series approach with temperature distributions. We extended the time windows of the original models until December 2021, computing various EM estimates to allow for comparisons. Results: We compared the results with our benchmark, the ISS-ISTAT official estimates. Model 1 was the most consistent, model 2 was almost identical, and model 3 differed from the two. Model 1 was the most stable towards changes in the baseline years, while model 2 had a lower cross-validation RMSE. Discussion: Presently, an unambiguous explanation of EM in Italy is not possible. We provide a range that we consider sound, given the high variability associated with the use of different models. However, all three models accurately represented the spatiotemporal trends of the pandemic waves in Italy

    A population-based cohort approach to assess excess mortality due to the spread of COVID-19 in Italy, January-May 2020

    Get PDF
    Aims: To assess the impact of the COVID-19 pandemic on all-cause mortality in Italy during the first wave of the epidemic, taking into consideration the geographical heterogeneity of the spread of COVID-19. Methods: This study is a retrospective, population-based cohort study using national statistics throughout Italy. Survival analysis was applied to data aggregated by day of death, age groups, sex, and Italian administrative units (107 provinces). We applied Cox models to estimate the relative hazards (RH) of excess mortality, comparing all-cause deaths in 2020 with the expected deaths from all causes in the same time period. The RH of excess deaths was estimated in areas with a high, moderate, and low spread of COVID-19. We reported the estimate also restricting the analysis to the period of March-April 2020 (first peak of the epidemic). Results: The study population consisted of 57,204,501 individuals living in Italy as of January 1, 2020. The number of excess deaths was 36,445, which accounts for 13.4% of excess mortalities from all causes during January-May 2020 (i.e., RH = 1.134; 95% confidence interval (CI): 1.129-1.140). In the macro-area with a relatively higher spread of COVID-19 (i.e., incidence rate, IR): 450-1,610 cases per 100,000 residents), the RH of excess deaths was 1.375 (95% CI: 1.364-1.386). In the area with a relatively moderate spread of COVID-19 (i.e., IR: 150-449 cases) it was 1.049 (95% CI: 1.038-1.060). In the area with a relatively lower spread of COVID-19 (i.e., IR: 30-149 cases), it was 0.967 (95% CI: 0.959-0.976). Between March and April (peak months of the first wave of the epidemic in Italy), we estimated an excess mortality from all causes of 43.5%. The RH of all-cause mortality for increments of 500 cases per 100,000 residents was 1.352 (95% CI: 1.346-1.359), corresponding to an increase of about 35%. Conclusions: Our analysis, making use of a population-based cohort model, estimated all-cause excess mortality in Italy taking account of both time period and of COVID-19 geographical spread. The study highlights the importance of a temporal/geographic framework in analyzing the risk of COVID-19-epidemy related mortality

    Characteristics of COVID-19 cases in Italy from a sex/gender perspective

    Get PDF
    Introduction: Coronavirus disease 19 (COVID-19) is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To date, few data on clinical features and risk factors for disease severity and death by gender are available. Aim: The current study aims to describe from a sex/gender perspective the characteristics of the SARS-CoV-2 cases occurred in the Italian population from February 2020 until October 2021. Method and results: We used routinely collected data retrieved from the Italian National Surveillance System. The highest number of cases occurred among women between 40 and 59 years, followed by men in the same age groups. The proportion of deaths due to COVID-19 was higher in men (56.46%) compared to women (43.54%). Most of the observed deaths occurred in the elderly. Considering the age groups, the clinical outcomes differed between women and men in particular in cases over 80 years of age; with serious or critical conditions more frequent in men than in women. Conclusions: Our data clearly demonstrate a similar number of cases in women and men, but with more severe disease and outcome in men, thus confirming the importance to analyse the impact of sex and gender in new and emerging diseases

    Impact of a Nationwide Lockdown on SARS-CoV-2 Transmissibility, Italy

    Get PDF
    On March 11, 2020, Italy imposed a national lockdown to curtail the spread of severe acute respiratory syndrome coronavirus 2. We estimate that, 14 days after lockdown, the net reproduction number had dropped below 1 and remained stable at »0.76 (95% CI 0.67-0.85) in all regions for >3 of the following weeks

    Incidence of Human Herpesvirus 8 (HHV-8) infection among HIV-uninfected individuals at high risk for sexually transmitted infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The occurrence of, and risk factors for, HHV-8 infection have yet to be definitively determined, particularly among heterosexual individuals with at-risk behavior for sexually transmitted infections (STI). The objective of this study was to estimate the incidence and determinants of HHV-8 infection among HIV-uninfected individuals repeatedly attending an urban STI clinic.</p> <p>Methods</p> <p>Sera from consecutive HIV-uninfected individuals repeatedly tested for HIV-1 antibodies were additionally tested for HHV-8 antibodies using an immunofluorescence assay. To identify determinants of HHV-8 infection, a nested case-control study and multivariate logistic regression analysis were performed.</p> <p>Results</p> <p>Sera from 456 HIV-uninfected individuals (224 multiple-partner heterosexuals and 232 men who have sex with men (MSM]) were identified for inclusion in the study. The HHV-8 seroprevalence at enrollment was 9.4% (21/224; 95% C.I.: 6.0–14.2%) among heterosexuals with multiple partners and 22.0% (51/232; 95% C.I.: 16.9–28.0%) among MSM. Among the 203 multiple-partner heterosexuals and 181 MSM who were initially HHV-8-negative, 17 (IR = 3.0/100 p-y, 95% C.I.: 1.9 – 4.8) and 21 (IR = 3.3/100 p-y, 95% C.I:.2.1 – 5.1) seroconversions occurred, respectively. HHV-8 seroconversion tended to be associated with a high number of sexual partners during the follow-up among MSM (> 10 partners: AOR = 3.32 95% CI:0.89–12.46) and among the multiple-partner heterosexuals (> 10 partner; AOR = 3.46, 95% CI:0.42–28.2). Moreover, among MSM, HHV-8 seroconversion tended to be associated with STI (AOR = 1.80 95%CI: 0.52–7.96).</p> <p>During the study period the HIV-1 incidence was lower than that of HHV-8 among both groups (0.89/100 p-y among MSM and 0.95/100 p-y among multiple-partner heterosexuals).</p> <p>Conclusion</p> <p>The large difference between the incidence of HHV-8 and the incidence of HIV-1 and other STIs may suggest that the circulation of HHV-8 is sustained by practices other than classical at-risk sexual behavior.</p

    Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020

    Get PDF
    BackgroundOn 20 February 2020, a locally acquired coronavirus disease (COVID-19) case was detected in Lombardy, Italy. This was the first signal of ongoing transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the country. The number of cases in Italy increased rapidly and the country became the first in Europe to experience a SARS-CoV-2 outbreak.AimOur aim was to describe the epidemiology and transmission dynamics of the first COVID-19 cases in Italy amid ongoing control measures.MethodsWe analysed all RT-PCR-confirmed COVID-19 cases reported to the national integrated surveillance system until 31 March 2020. We provide a descriptive epidemiological summary and estimate the basic and net reproductive numbers by region.ResultsOf the 98,716 cases of COVID-19 analysed, 9,512 were healthcare workers. Of the 10,943 reported COVID-19-associated deaths (crude case fatality ratio: 11.1%) 49.5% occurred in cases older than 80 years. Male sex and age were independent risk factors for COVID-19 death. Estimates of R0 varied between 2.50 (95% confidence interval (CI): 2.18-2.83) in Tuscany and 3.00 (95% CI: 2.68-3.33) in Lazio. The net reproduction number Rt in northern regions started decreasing immediately after the first detection.ConclusionThe COVID-19 outbreak in Italy showed a clustering onset similar to the one in Wuhan, China. R0 at 2.96 in Lombardy combined with delayed detection explains the high case load and rapid geographical spread. Overall, Rt in Italian regions showed early signs of decrease, with large diversity in incidence, supporting the importance of combined non-pharmacological control measures

    Epidemiological characteristics of COVID-19 cases in non-Italian nationals notified to the Italian surveillance system

    Get PDF
    BACKGROUND: International literature suggests that disadvantaged groups are at higher risk of morbidity and mortality from SARS-CoV-2 infection due to poorer living/working conditions and barriers to healthcare access. Yet, to date, there is no evidence of this disproportionate impact on non-national individuals, including economic migrants, short-term travellers and refugees. METHODS: We analyzed data from the Italian surveillance system of all COVID-19 laboratory-confirmed cases tested positive from the beginning of the outbreak (20th of February) to the 19th of July 2020. We used multilevel negative-binomial regression models to compare the case fatality and the rate of admission to hospital and intensive care unit (ICU) between Italian and non-Italian nationals. The analysis was adjusted for differences in demographic characteristics, pre-existing comorbidities, and period of diagnosis. RESULTS: We analyzed 213 180 COVID-19 cases, including 15 974 (7.5%) non-Italian nationals. We found that, compared to Italian cases, non-Italian cases were diagnosed at a later date and were more likely to be hospitalized {[adjusted rate ratio (ARR)=1.39, 95% confidence interval (CI): 1.33-1.44]} and admitted to ICU (ARR=1.19, 95% CI: 1.07-1.32), with differences being more pronounced in those coming from countries with lower human development index (HDI). We also observed an increased risk of death in non-Italian cases from low-HDI countries (ARR=1.32, 95% CI: 1.01-1.75). CONCLUSIONS: A delayed diagnosis in non-Italian cases could explain their worse outcomes compared to Italian cases. Ensuring early access to diagnosis and treatment to non-Italians could facilitate the control of SARS-CoV-2 transmission and improve health outcomes in all people living in Italy, regardless of nationality
    corecore