373 research outputs found

    Control of Single-Molecule Magnetic Properties Using Metallacrowns.

    Full text link
    This dissertation studied controlling single-molecule magnetic (SMM) properties by using the metallacrown motif. Large mixed lanthanide-manganese complexes, LnIII6MnIII2MnIV2(shi)6(Hshi)4(H2shi)2(Hsal)4, where H3shi is salicylhydroxamic acid, H2sal is salicylic acid, LnIII = GdIII, TbIII, or DyIII, and LnIII4MnIII4(OH)2(O2C2H3)2(shi)4(H2shi)4(Hsal)4 LnIII = DyIII, HoIII, or ErIII, were produced, with the DyIII analog of each series showing slow magnetic relaxation, a hallmark of SMM behavior. A new family of LnIII 14-MCMnIIILnIII(μ-O)(μ-OH)N(shi)-5 complexes (LnIII = YIII, GdIII, TbIII, DyIII, HoIII, or ErIII) was prepared which oriented the anisotropy tensors of the MnIII ions in a single direction, perpendicular to the metallacrown plane. The complexes, with the exception of the YIII and GdIII analogs, showed slow magnetic relaxation, with the DyIII analog having a Ueff of 16.7 K and τ0 = 4.9 x 10-8 s, at the time, the third largest Ueff for mixed Mn/Ln complexes, despite using fewer metals than other examples. Using simpler, planar NiII(O2C2H3)2 12-MCMnIIIN(shi)-4 complexes revealed that lattice solvents affect whether SMM or single-chain magnetic (SCM) behavior is observed. The NiII 12-MC-4 isolated in methanol had a hydrogen-bond network, leading to SCM behavior; the complex isolated in dimethylformamide, lacking the hydrogen-bonding network, shows SMM behavior. To improve SMM properties, the more anisotropic DyIII ion was incorporated, forming DyIIIX4A 12-MCMnIIIN(shi)-4 (A = H3O+, Na+, K+; X = salicylate, benzoate, acetate). SMM behavior occurred only for the salicylate bridged complexes, regardless of counter ion. Slight structural changes due to ligand substitution explain this observation. Metallacrown single-ion magnet (SIMs) were examined using a series of LnIIIZn16 complexes (LnIII = GdIII, TbIII, DyIII, HoIII, ErIII, YbIII), with the ErIIIZn16 showing SMM behavior, as revealed by single-crystal SQUID magnetometry measurements. The ligand field around the LnIII ion dramatically affected the magnetic behavior, dependent on the shape of the occupied f orbitals. In conclusion, structures with controlled molecular anisotropy led to well isolated ground states, improving SMM behavior. It was found that for larger Mn/Ln complexes, it is difficult to obtain high Ueff without structural control. In addition, DyIII or ErIII ions proved to be better LnIII ions due to their intrinsic anisotropy and Kramers doublet ground state.PHDChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/93971/1/ttboron_1.pd

    Role of carbon dioxide and ion transport in the formation of sub-embryonic fluid by the blastoderm of the Japanese quail

    Get PDF
    1. The explanted blastoderm of the Japanese quail was used to explore the role of ions and carbon dioxide in determining the rate of sub-embryonic fluid (SEF) production between 54 and 72 h of incubation. 2. Amiloride, an inhibitor of Na+/H+ exchange, at concentrations of 10-3 to 10-6 M substantially decreased the rate of SEF production when added to the albumen culture medium. N-ethylmaleimide, an inhibitor of V type H+ ATPase, also decreased this rate but only to a small extent at the highest dose applied, 10-3 M. Both inhibitors had no effect on SEF production when added to the SEF. 3. The inhibitors of cellular bicarbonate and chloride exchange, 4-acetamido-4-'isothiocyano-2, 2-'disulphonic acid (SITS) and 4,4'diisothiocyanostilbene-2,2-'disulphonic acid (DIDS), had no effect upon SEF production. 4. Ouabain, an inhibitor of Na+/K+ ATPase, decreased SEF production substantially at all concentrations added to the SEF (10-3 to 10-6 M). Three sulphonamide inhibitors of carbonic anhydrase, acetazolamide, ethoxzolamide and benzolamide, decreased SEF production when added to the SEF at concentrations of 10-3 to 10-6 M. Benzolamide was by far the most potent. Neither ouabain nor the sulphonamides altered SEF production when added to the albumen culture medium. 5. Using a cobalt precipitation method, carbonic anhydrase activity was localised to the endodermal cells of the area vasculosa. The carbonic anhydrase activity was primarily associated with the lateral plasma membranes, which together with the potent inhibitory effect of benzolamide, suggests the carbonic anhydrase of these cells is the membrane-associated form, CA IV. 6. The changes in SEF composition produced by inhibitors were consistent with the production of SEF by local osmotic gradients. 7. It is concluded that a Na+/K+ ATPase is located on the basolateral membranes of the endodermal cells of the area vasculosa , and that a sodium ion/hydrogen ion exchanger is located on their apical surfaces. Protons for this exchanger would be provided by the hydration of CO2 catalysed by the membrane-associated carbonic anhydrase. Furthermore, it is proposed that the prime function of the endodermal cells of the area vasculosa is the production of SEF

    Expression of calcification‐related ion transporters during blue mussel larval development

    Get PDF
    The physiological processes driving the rapid rates of calcification in larval bivalves are poorly understood. Here, we use a calcification substrate‐limited approach (low dissolved inorganic carbon, CT) and mRNA sequencing to identify proteins involved in bicarbonate acquisition during shell formation. As a secondary approach, we examined expression of ion transport and shell matrix proteins (SMPs) over the course of larval development and shell formation. We reared four families of Mytilus edulis under ambient (ca. 1865 μmol/kg) and low CT (ca. 941 μmol/kg) conditions and compared expression patterns at six developmental time points. Larvae reared under low CT exhibited a developmental delay, and a small subset of contigs was differentially regulated between ambient and low CT conditions. Of particular note was the identification of one contig encoding an anion transporter (SLC26) which was strongly upregulated (2.3–2.9 fold) under low CT conditions. By analyzing gene expression profiles over the course of larval development, we are able to isolate sequences encoding ion transport and SMPs to enhance our understanding of cellular pathways underlying larval calcification processes. In particular, we observe the differential expression of contigs encoding SLC4 family members (sodium bicarbonate cotransporters, anion exchangers), calcium‐transporting ATPases, sodium/calcium exchangers, and SMPs such as nacrein, tyrosinase, and transcripts related to chitin production. With a range of candidate genes, this work identifies ion transport pathways in bivalve larvae and by applying comparative genomics to investigate temporal expression patterns, provides a foundation for further studies to functionally characterize the proteins involved in larval calcification

    The Beta-decay Paul Trap Mk IV: Design and commissioning

    Full text link
    The Beta-decay Paul Trap is an open-geometry, linear trap used to measure the decays of 8^8Li and 8^8B to search for a tensor contribution to the weak interaction. In the latest 8^8Li measurement of Burkey et al. (2022), β\beta scattering was the dominant experimental systematic uncertainty. The Beta-decay Paul Trap Mk IV reduces the prevalence of β\beta scattering by a factor of 4 through a redesigned electrode geometry and the use of glassy carbon and graphite as electrode materials. The trap has been constructed and successfully commissioned with 8^8Li in a new data campaign that collected 2.6 million triple coincidence events, an increase in statistics by 30% with 4 times less β\beta scattering compared to the previous 8^8Li data set.Comment: 17 pages, 7 figure

    Karyotype and genome size of Iberochondrostoma almacai (Teleostei, Cyprinidae) and comparison with the sister-species I.lusitanicum

    Get PDF
    This study aimed to define the karyotype of the recently described Iberian endemic Iberochondrostoma almacai, to revisit the previously documented chromosome polymorphisms of its sister species I.lusitanicum using C-, Ag-/CMA3 and RE-banding, and to compare the two species genome sizes. A 2n = 50 karyotype (with the exception of a triploid I.lusitanicum specimen) and a corresponding haploid chromosome formula of 7M:15SM:3A (FN = 94) were found. Multiple NORs were observed in both species (in two submetacentric chromosome pairs, one of them clearly homologous) and a higher intra and interpopulational variability was evidenced in I.lusitanicum. Flow cytometry measurements of nuclear DNA content showed some significant differences in genome size both between and within species: the genome of I. almacai was smaller than that of I.lusitanicum (mean values 2.61 and 2.93 pg, respectively), which presented a clear interpopulational variability (mean values ranging from 2.72 to 3.00 pg). These data allowed the distinction of both taxa and confirmed the existence of two well differentiated groups within I. lusitanicum: one that includes the populations from the right bank of the Tejo and Samarra drainages, and another that reunites the southern populations. The peculiar differences between the two species, presently listed as “Critically Endangered”, reinforced the importance of this study for future conservation plans

    The increasing threat to European forests from the invasive foliar pine pathogen, Lecanosticta acicola

    Get PDF
    European forests are threatened by increasing numbers of invasive pests and pathogens. Over the past century, Lecanosticta acicola, a foliar pathogen predominantly of Pinus spp., has expanded its range globally, and is increasing in impact. Lecanosticta acicola causes brown spot needle blight, resulting in premature defoliation, reduced growth, and mortality in some hosts. Originating from southern regions of North American, it devastated forests in the USA's southern states in the early twentieth century, and in 1942 was discovered in Spain.Derived from Euphresco project 'Brownspotrisk,' this study aimed to establish the current distribution of Lecanosticta species, and assess the risks of L. acicola to European forests. Pathogen reports from the literature, and new/ unpublished survey data were combined into an open-access geo-database (http://www.portaloff orestpathology.com), and used to visualise the pathogen's range, infer its climatic tolerance, and update its host range. Lecanosticta species have now been recorded in 44 countries, mostly in the northern hemisphere. The type species, L. acicola, has increased its range in recent years, and is present in 24 out of the 26 European countries where data were available. Other species of Lecanosticta are largely restricted to Mexico and Central America, and recently Colombia.The geo-database records demonstrate that L. acicola tolerates a wide range of climates across the northern hemisphere, and indicate its potential to colonise Pinus spp. forests across large swathes of the Europe. Pre-liminary analyses suggest L. acicola could affect 62% of global Pinus species area by the end of this century, under climate change predictions.Although its host range appears slightly narrower than the similar Dothistroma species, Lecanosticta species were recorded on 70 host taxa, mostly Pinus spp., but including, Cedrus and Picea spp. Twenty-three, including species of critical ecological, environmental and economic significance in Europe, are highly susceptible to L. acicola, suffering heavy defoliation and sometimes mortality. Variation in apparent susceptibility between reports could reflect variation between regions in the hosts' genetic make-up, but could also reflect the signif-icant variation in L. acicola populations and lineages found across Europe. This study served to highlight sig-nificant gaps in our understanding of the pathogen's behaviour.Lecanosticta acicola has recently been downgraded from an A1 quarantine pest to a regulated non quarantine pathogen, and is now widely distributed across Europe. With a need to consider disease management, this study also explored global BSNB strategies, and used Case Studies to summarise the tactics employed to date in Europe

    Evidence for the adaptation of protein pH-dependence to subcellular pH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of genome sequences, and inferred protein coding genes, has led to several proteome-wide studies of isoelectric points. Generally, isoelectric points are distributed following variations on a biomodal theme that originates from the predominant acid and base amino acid sidechain pKas. The relative populations of the peaks in such distributions may correlate with environment, either for a whole organism or for subcellular compartments. There is also a tendency for isoelectric points averaged over a subcellular location to not coincide with the local pH, which could be related to solubility. We now calculate the correlation of other pH-dependent properties, calculated from 3D structure, with subcellular pH.</p> <p>Results</p> <p>For proteins with known structure and subcellular annotation, the predicted pH at which a protein is most stable, averaged over a location, gives a significantly better correlation with subcellular pH than does isoelectric point. This observation relates to the cumulative properties of proteins, since maximal stability for individual proteins follows the bimodal isoelectric point distribution. Histidine residue location underlies the correlation, a conclusion that is tested against a background of proteins randomised with respect to this feature, and for which the observed correlation drops substantially.</p> <p>Conclusion</p> <p>There exists a constraint on protein pH-dependence, in relation to the local pH, that is manifested in the pKa distribution of histidine sub-proteomes. This is discussed in terms of protein stability, pH homeostasis, and fluctuations in proton concentration.</p

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF
    corecore