192 research outputs found

    Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    Get PDF
    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a thorough revision, which cannot be achieved by considering morphology alone or relying on a taxon sampling based on the current classification below the subclass level

    GD1a modulates GM-CSF-induced cell proliferation

    Get PDF
    AbstractGangliosides have been extensively described to be involved in the proliferation and differentiation of various cell types, such including hematopoietic cells. Our previous studies on murine models of stroma-mediated myelopoiesis have shown that gangliosides are required for optimal capacity of stromal cells to support proliferation of myeloid precursor cells, being shed to the supernatant and selectively incorporated into myeloid cell membranes. Here we describe the effect of gangliosides on the specific granulocyte–macrophage colony-stimulating factor (GM-CSF)-induced proliferation. For that, we used the monocytic FDC-P1 cell line, which is dependent upon GM-CSF for survival and proliferation. Cells were cultured in the presence of GM-CSF and exogenous gangliosides (GM3, GD1a or GM1) or in the absence of endogenous ganglioside synthesis by the use of a ceramide-synthase inhibitor, d-PDMP. We observed that exogenous addition of GD1a enhanced the GM-CSF-induced proliferation of the FDC-P1 cells. Also, we detected an increase in the expression of the α isoform of the GM-CSF receptor (GMRα) as well as of the transcription factor C/EBPα. On the contrary, inhibition of glucosylceramide synthesis was accompanied by a decrease in cell proliferation, which was restored upon the addition of exogenous GD1a. We also show a co-localization of GD1a and GMR by immunocytochemistry. Taken together, our results suggest for the first time that ganglioside GD1a play a role on the modulation of GM-CSF-mediated proliferative response, which might be of great interest not only in hematopoiesis, but also in other immunological processes, Alzheimer disease, alveolar proteinosis and wherever GM-CSF exerts its effects

    Milky spots reactions to schistosomal mansoni infection

    Full text link
    Milky spots (MS), considered by the authors as a Coelomatic Lympho-myelopoietic Organ (CLMO), present a strong reactivity during experimental schistosomal mansoni infection, characterized by an increase of lymphocytes, macrophages, plasmocytes, mast cells, neutrophils and expression of eosinophil metaplasia. Intraperitoneal injection of purified Schistosoma mansoni (Sm) eggs provoked a rise in the number and size of MS, which developed the sessile marginal and pedunculated types. The authors conclude that egg antigens are, at least partially, responsible for MS reactivity during Sm infection

    Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells

    Get PDF
    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies

    Lipid-laden multilocular cells in the aging thymus are phenotypically heterogeneous

    Get PDF
    Intrathymic lipid-laden multilocular cells (LLMC) are known to express pro-inflammatory factors that might regulate functional activity of the thymus. However, the phenotype of ageassociated intrathymic LLMC is still controversial. In this study, we evaluated LLMC density in the aging thymus and better characterized their distribution, ultrastructure and phenotype. Our results show an increased density of LLMC in the thymus from 03 to 24 months of age. Morphologically, intrathymic LLMC exhibit fibroblastoid fusiform, globular or stellate shapes and can be found in the subcapsular region as well as deeper in the parenchyma, including the perivascular area. Some parenchymal LLMC were like telocytes accumulating lipids. We identified lipid droplets with different electrondensities, lipofuscin granules and autolipophagosomelike structures, indicating heterogeneous lipid content in these cells. Autophagosome formation in intrathymic LLMC was confirmed by positive staining for beclin-1 and perilipin (PLIN), marker for lipid droplet-associated proteins.We also found LLMC in close apposition to thymic stromal cells, endothelial cells, mast cells and lymphocytes. Phenotypically, we identified intrathymic LLMC as preadipocytes (PLIN+PPARγ2+), brown adipocytes (PLIN+UCP1+), macrophages (PLIN+Iba-1+) or pericytes (PLIN+NG2+) but not epithelial cells (PLIN- panCK+). These data indicate that intrathymic LLMC are already present in the young thymus and their density significantly increases with age. We also suggest that LLMC, which are morphologically distinct, establish direct contact with lymphocytes and interact with stromal cells. Finally, we evidence that intrathymic LLMC correspond to not only one but to distinct cell types accumulating lipids

    Lymphatic vessels in human adipose tissue

    Get PDF
    Despite being considered present in most vascularised tissues, lymphatic vessels have not been properly shown in human adipose tissue (AT). Our goal in this study is to investigate an unanswered question in AT biology, regarding lymphatic network presence in tissue parenchyma. Using human subcutaneous (S-) and visceral (V-) AT samples with whole mount staining for lymphatic specific markers and three-dimensional imaging, we showed lymphatic capillaries and larger lymphatic vessels in the human VAT. Conversely, in the human SAT, microcirculatory lymphatic vascular structures were rarely detected and no initial lymphatics were found

    Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model

    Get PDF
    BACKGROUND: Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow-derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34(+) cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34(+) cells was decreased. CONCLUSIONS/SIGNIFICANCE: Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation
    corecore