33 research outputs found

    Strain-dependent mutational effects for Pepino mosaic virus in a natural host

    Get PDF
    [EN] Pepino mosaic virus (PepMV) is an emerging plant pathogen that infects tomatoes worldwide. Understanding the factors that influence its evolutionary success is essential for developing new control strategies that may be more robust against the evolution of new viral strains. One of these evolutionary factors is the distribution of mutational fitness effect (DMFE), that is, the fraction of mutations that are lethal, deleterious, neutral, and beneficial on a given viral strain and host species. The goal of this study was to characterize the DMFE of introduced nonsynonymous mutations on a mild isolate of PepMV from the Chilean 2 strain (PepMV-P22). Additionally, we also explored whether the fitness effect of a given mutation depends on the gene where it appears or on epistatic interactions with the genetic background. To address this latter possibility, a subset of mutations were also introduced in a mild isolate of the European strain (PepMV-P11) and the fitness of the resulting clones measured.This study was financially supported by grant 2011/01/D/NZ9/00279, from the Poland National Science Center, to B.H.J and by grants BFU2015-65037-P, from Spain Ministry of Economy and Competitiveness-FEDER, and PROMETEOII/2014/021, from Generalitat Valenciana, to S.F.E.Minicka, J.; Elena Fito, SF.; Borodynko-Filas, N.; Rubis, B.; Hasiów-Jaroszewska, B. (2017). Strain-dependent mutational effects for Pepino mosaic virus in a natural host. BMC Evolutionary Biology. 17:1-11. https://doi.org/10.1186/s12862-017-0920-4S11117Steinhauer DA, Domingo E, Holland JJ. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene. 1992;122:281–8.Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84:9733–48.Domingo E. Viruses at the edge of adaptation. Virology. 2000;270:251–3.Chao L. Fitness of RNA virus decreased by muller ratchet. Nature. 1990;348:454–5.Duarte E, Clarke D, Moya A, Domingo E, Holland J. Rapid fitness losses in mammalian RNA virus clones due to Muller ratchet. Proc Natl Acad Sci U S A. 1992;89:6015–9.De la Iglesia F, Elena SF. Fitness declines in Tobacco etch virus upon serial bottleneck transfers. J Virol. 2007;81:4941–7.Elena SF, Carrasco P, Daròs JA, Sanjuán R. Mechanisms of genetic robustness in RNA viruses. EMBO Rep. 2006;7:168–73.Elena SF, Moya A. Rate of deleterious mutation and the distribution of its effects on fitness in Vesicular stomatitis virus. J Evol Biol. 1999;12:1078–88.Sanjuán R, Moya A, Elena SF. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci U S A. 2004;101:8396–401.Acevedo A, Brodsky L, Andino R. Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature. 2014;505:686–90.Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS. The mutational robustness of Influenza A virus. PLoS Pathog. 2016;12, e1005856.Carrasco P, de la Iglesia F, Elena SF. Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco etch virus. J Virol. 2007;81:12979–84.Bernet GP, Elena SF. Distribution of mutational fitness effects and of epistasis in the 5′ untranslated region of a plant RNA virus. BMC Evol Biol. 2015;15:274.Domingo-Calap P, Cuevas JM, Sanjuán R. The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages. PLoS Genet. 2009;5, e1000742.Peris JB, Davis P, Cuevas JM, Nebot MR, Sanjuán R. Distribution of fitness effects caused by single-nucleotide substitutions in bacteriophage f1. Genetics. 2010;185:603–9.Keightley PD, Ohnishi O. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics. 1998;148:753–66.Keightley PD, Davies EK, Peters AD, Shaw RG. Properties of ethylmethane sulfonate-induced mutations affecting life-history traits in Caenorhabditis elegans and inferences about bivariate distributions of mutation effects. Genetics. 2000;156:143–54.Koufopanou V, Lomas S, Tsai IJ, Burt A. Estimating the fitness effects of new mutations in the wild yeast Saccharomyces paradoxus. Genome Biol Evol. 2015;7:1887–95.Sanjuán R. Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis. Philos Trans R Soc B. 2010;365:1975–82.Keightley PD, Lynch M. Toward a realistic model of mutations affecting fitness. Evolution. 2003;57:683–5.Orr HA. The distribution of fitness effects among beneficial mutations. Genetics. 2003;163:1519–26.Miralles R, Gerrish PJ, Moya A, Elena SF. Clonal interference and the evolution of RNA viruses. Science. 1999;285:1745–7.Escarmís C, Dávila M, Charpentier N, Bracho A, Moya A, Domingo E. Genetic lesions associated with Muller’s ratchet in an RNA virus. J Mol Biol. 1996;264:255–67.Phillips PC. Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008;9:855–67.De Visser JAGM, Krug J. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet. 2014;15:480–90.Lalić J, Elena SF. Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus. Heredity. 2012;109:71–7.Lalić J, Elena SF. The impact of higher-order epistasis in the within-host fitness of a positive-sense plant RNA virus. J Evol Biol. 2015;28:2236–47.Hillung J, Cuevas JM, Elena SF. Evaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host. Philos Trans R Soc B. 2015;370:20140292.Cervera H, Lalić J, Elena SF. Effect of host species on the topography of the fitness landscape for a plant RNA virus. J Virol. 2016;90:10160–9.Cervera H, Lalić J, Elena SF. Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proc R Soc B. 2016;283:20160984.Blystad DR, van der Vlugt R, Alfaro-Fernandez A, Cordoba MD, Bese G, Hristova D, Pospieszny H, Mehle N, Ravnikar M, Tomassoli L, Varveri C, Nielsen SL. Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. Eur J Plant Pathol. 2015;143:43–56.Mumford RA, Metcalfe EJ. The partial sequencing of the genomic RNA of a UK isolate of Pepino mosaic virus and the comparison of the coat protein sequence with other isolates from Europe and Peru. Arch Virol. 2001;146:2455–60.Roggero P, Masenga V, Lenzi R, Coghe F, Ena S, Winter S. First report of Pepino mosaic virus in tomato in Italy. Plant Dis. 2001;3:8.Cotillon AC, Girard M, Ducouret S. Complete nucleotide sequence of the genomic RNA of a French isolate of Pepino mosaic virus (PepMV). Arch Virol. 2002;147:2231–8.Maroon-Lango CJ, Guaragna MA, Jordan RL, Hammond J, Bandla M, Marquardt SK. Two unique US isolates of Pepino mosaic virus from a limited source of pooled tomato tissue are distinct from a third (European-like) US isolate. Arch Virol. 2005;150:1187–201.Pagán I, Córdoba-Selles MD, Martínez-Priego L, Fraile A, Malpica JM, Jorda C, García-Arenal F. Genetic structure of the population of Pepino mosaic virus infecting tomato crops in Spain. Phytopathology. 2006;96:274–9.Ling KS. Molecular characterization of two Pepino mosaic virus variants from imported tomato seed reveals high levels of sequence identity between Chilean and US isolates. Virus Genes. 2007;34:1–8.Hanssen IM, Paeleman A, Wittemans L, Goen K, Lievens B, Bragard C, Vanachter A, Thomma B. Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. Eur J Plant Pathol. 2008;121:131–46.Hasiów B, Borodynko N, Pospieszny H. Complete genomic RNA sequence of the Polish Pepino mosaic virus isolate belonging to the US2 strain. Virus Genes. 2008;36:209–14.Hanssen IM, Paeleman A, Vandewoestijne E, Van Bergen L, Bragard C, Lievens B, Vanacher ACRC, Thomma BPHJ. Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathol. 2009;58:450–60.Moreno-Pérez MG, Pagán I, Aragón-Caballero L, Cáceres F, Fraile A, García-Arenal F. Ecological and genetic determinants of Pepino mosaic virus emergence. J Virol. 2014;88:3359–68.Ling K, Li R, Bledsoe M. Pepino mosaic virus genotype shift in North America and development of a loop-mediated isothermal amplification for rapid genotype identification. Virol J. 2013;10:117.Hasiów-Jaroszewska B, Paeleman A, Ortega-Parra N, Borodynko N, Minicka J, Czerwoniec A, Thomma BP, Hanssen IM. Ratio of mutated versus wild-type coat protein sequences in Pepino mosaic virus determines the nature and severity of yellowing symptoms on tomato plants. Mol Plant Pathol. 2013;14:923–33.Sempere RN, Gómez-Aix C, Ruiz-Ramon F, Gómez P, Hasiów-Jaroszewska B, Sánchez-Pina MA, Aranda MA. Pepino mosaic virus RNA-dependent RNA polymerase POL domain is a hypersensitive response-like elicitor shared by necrotic and mild isolates. Phytopathology. 2016;106:395–406.Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H. Single mutation converts mild pathotype of the Pepino mosaic virus into necrotic one. Virus Res. 2011;159:57–61.Minicka J, Rymelska N, Elena SF, Czerwoniec A, Hasiów-Jaroszewska B. Molecular evolution of Pepino mosaic virus during long-term passaging in different hosts and its impact on virus virulence. Ann Appl Biol. 2015;166:389–401.Hasiów-Jaroszewska B, Jackowiak P, Borodynko N, Figlerowicz M, Pospieszny H. Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes. 2010;41:260–7.Eigen M, McCaskill J, Schuster P. Molecular quasi-species. J Phys Chem. 1988;92(24):6881–91.Schneider WL, Roossinck MJ. Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. J Virol. 2000;74:3130–4.Legg JP, Thresh JM. Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Res. 2000;71:135–49.Hasiów-Jaroszewska B, Borodynko N, Pospieszny H. Infectious RNA transcripts derived from cloned cDNA of a Pepino mosaic virus isolate. Arch Virol. 2009;154:853–6.Hasiów-Jaroszewska B, Komorowska B. A new method for detection and discrimination of Pepino mosaic virus isolates using high resolution melting analysis of the triple gene block 3. J Virol Methods. 2013;193:1–5.Poelwijk FJ, Tanase-Nicola S, Kiviet DJ, Tans SJ. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J Theor Biol. 2011;272:141–4.Dean AM, Thornton JW. Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet. 2007;8:675–88.Lalić J, Cuevas JM, Elena SF. Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet. 2011;7, e1002378.Vale PF, Choisy M, Froissart R, Sanjuán R, Gandon S. The distribution of mutational fitness effects of phage ϕX174 on different hosts. Evolution. 2012;66:3495–507.Hasiów-Jaroszewska B, Minicka J, Pospieszny H. Cross-protection between different pathotypes of Pepino mosaic virus representing chilean 2 genotype. Acta Sci Pol Hortoru. 2014;13:177–85.Minicka J, Otulak K, Garbaczewska G, Pospieszny H, Hasiów-Jaroszewska B. Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins. Micron. 2015;79:84–92.Gómez P, Sempere RN, Aranda MA, Elena SF. Phylodynamics of Pepino mosaic virus in Spain. Eur J Plant Pathol. 2012;134:445–9.Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006;439:344–8.Domingo E, Martíb V, Perales C, Grande-Pérez A, García-Arriaza Arias J. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol. 2006;299:51–82.Jones RAC, Koenig R, Lesemann DE. Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol. 1980;94:61–8.Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216.Lough TJ, Emerson SJ, Lucas WJ, Forster RLS. Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: Phloem-associated movement of TGBp1. Virology. 2001;288:18–28.Pospieszny H, Hasiów B, Borodynko N. Characterization of two distinct Polish isolates of Pepino mosaic virus. Eur J Plant Pathol. 2008;122:443–5.Gómez P, Sempere RN, Elena SF, Aranda MA. Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol. 2009;83:12378–87.Elena SF, Solé RV, Sardanyés J. Simple genomes, complex interactions: epistasis in RNA virus. Chaos. 2010;20:026106.Sanjuán R, Moya A, Elena SF. The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci USA. 2004;101:15376–9.Elena SF. RNA virus genetic robustness: possible causes and some consequences. Curr Opin Virol. 2012;2:525–30.Stern A, Bianco S, Yeh MT, Wright CF, Butcher K, Tang C, Nielsen R, Andino R. Costs and benefits of mutational robustness in RNA viruses. Cell Rep. 2014;8:1–11.Elena SF, Lalić J. Plant RNA virus fitness predictability: contribution of genetic and environmental factors. Plant Pathol. 2013;62:10–8

    Genome editing (CRISPR/Cas9) in plant disease management: challenges and future prospects

    Get PDF
    The field of plant pathology has adopted targeted genome editing technology as one of its most crucial and effective genetic tools. Due to its simplicity, effectiveness, versatility, CRISPR together with CRISPR-associated proteins found in an adaptive immune system of prokaryotes have recently attracted the interest of the scientific world. Plant disease resistance must be genetically improved for sustainable agriculture. Plant biology and biotechnology have been transformed by genome editing, which makes it possible to perform precise and targeted genome modifications. Editing offers a fresh approach by genetically enhancing plant disease resistance and quickening resistance through breeding. It is simpler to plan and implement, has a greater success rate, is more adaptable and less expensive than other genome editing methods. Importantly CRISPR/Cas9 has recently surpassed plant science as well as plant disease. After years of research, scientists are currently modifying and rewriting genomes to create crop plants which are immune to particular pests and diseases. The main topics of this review are current developments in plant protection using CRISPR/Cas9 technology in model plants and commodities in response to viral, fungal, and bacterial infections, as well as potential applications and difficulties of numerous promising CRISPR/Cas9-adapted approaches

    Partial characterization of Sunn-hemp mosaic tobamovirus [SHMV] isolated from bean plants [Phaseolus vulgaris L.]

    No full text
    This work presents some properties of Sunn-hemp mosaic tobamovirus (SHMV) orginally isolated from bean plants. Virus infected host range and induced symptoms that were typical for SHMV. Following plant species distinquished SHMV from tobacco mosaic tobamovirus (TMV): Phaseolus vulgaris, Pisum sativum, Lupinus albus and Lycopersicon esculentum. In immunoblotting the serum against SHMV did not react with TMV and Tomato mosaic tobamovirus (ToMV). The electrophoretical patterns of whole virions and capsid proteins were characteristic for SHMV and different from that of TMV and ToMV.W pracy przedstawiono charakterystykę wirusa mozaiki krotalarii (SHMV) wyizolowanego z siewek fasoli wyrosłych z zainfekowanych nasion. Stwierdzono, że zakres roślin gospodarzy badanego izolatu SHMV oraz wywoływane przez niego objawy chorobowe były typowe dla tego wirusa. Gatunki roślin takie jak: Phaseolus vulgaris, Pisum sativum, Lupinus albus i Lycopersicon esculentum różnicują SHMV od TMV. W teście immunoblotingu surowica przeciwko SHMV nie reagowała z TMV-U i ToMV-2., z kolei surowica przeciwko TMV reagowała jedynie z TMV-U₁ i ToMV-2. Obrazy elektroforetyczne zarówno całych virionów jak i białek otoczki wirusowej były charakterystyczne dla SHMV i różne od tych dla TMV-U₁ oraz ToMV-2

    Restriction analysis of genetic variability of Polish isolates of Tomato black ring virus.

    No full text
    Several different isolates of Tomato black ring virus (TBRV) have been collected in Poland from cucumber, tomato, potato and black locust plants. Biological tests showed some differences in the range of infected plants and the type of symptoms, which was the basis for selection of seven the most biologically different TBRV isolates. According to the sequence of TBRV-MJ, several primer pairs were designed and almost the entire sequence of both genomic RNAs was amplified. The RT-PCR products derived from all tested TBRV isolates were digested by restriction enzymes. On the basis of the restriction patterns, the variable and the conserved regions of the TBRV genome were defined and the relationships between the Polish TBRV isolates established

    Biologiczna i molekularna charakterystyka polskich izolatów wirusa mozaiki cukinii (Zuchinii yellow mosaic virus)

    No full text
    The diversity of Zucchini yellow mosaic virus (ZYMV) isolates from cucumber and zucchini plants growing in different regions of Poland was analyzed using biological tests and molecular biology techniques. The isolates differed in their host range and symptoms induced by them on a series of plant species. In addition, the analysis of the genetic diversity of the coat protein (CP) gene revealed high level of nucleotide variability among the isolates. Comparison of the CP gene sequences of 70 isolates from different geographical regions worldwide showed that the Polish isolates belong to different groups and they do not form a monophyletic cluster with European isolates. Interestingly, among the central European ZYMV isolates lower variability has been observed previously. The ratio of nonsynonymous to synonymous polymorphic sites showed a dominant negative selection however codons which might undergo positive selection were also identified. Moreover, the evidences for recombination in analyzed sequences of the CP gene of the analyzed ZYMV isolates were provided.Wirus żółtej mozaiki cukinii (Zucchini yellow mosaic virus, ZYMV) charakteryzuje się wysokim stopniem zróżnicowania zarówno biologicznego, jak i genetycznego. W pracy analizowano zakres roślin gospodarzy i symptomy wywoływane przez polskie izolaty ZYMV. Ponadto przeprowadzono analizę filogenetyczną i przebiegu rekombinacji z wykorzystaniem sekwencji nukleotydów genu kodującego białko płaszcza polskich i 67 innych izolatów ZYMV, których sekwencje zdeponowano w Banku Genów. Badania wykazały, że polskie izolaty nie tylko różniły się od siebie w teście biologicznym, ale należą do różnych grup filogenetycznych, nie tworząc tym samym jednej grupy z innymi izolatami europejskimi. Analiza presji selekcyjnej działającej na populację izolatów ZYMV wykazać dominację presji negatywnej, aczkolwiek zidentyfikowano również kodony, które mogą podlegać wpływowi pozytywnej presji selekcyjnej

    Full length genome sequence of Polish isolate of Beet soil-borne virus confirms low level of genetic diversity

    No full text
    The complete nucleotide sequence of a Polish isolate of Beet soil-borne virus was determined for the first time. The genome organization was identical with those previously established for isolates from Germany and China. A comparison of the Polish isolate with others deposited in GenBank reveled high level of nucleotide identity, about 98-100%, throughout the genome analyzed. The ratio between non-synonymous and synonymous substitutions was rather low suggesting a negative selective pressure. The non-synonymous mutations were particulary frequent in triple gene block

    Rapid evolutionary dynamics of the Pepino mosaic virus - status and future perspectives

    No full text
    Pepino mosaic virus (PepMV) has emerged as an important pathogen of greenhouse tomato crops and is currently distributed worldwide. Population genetic studies have revealed a shift in the dominant PepMV genotype from European (EU) to Chilean 2 (CH2) in North America and several European countries. New genetic variants are constantly being created by mutation and recombination events. Single nucleotide substitutions in different parts of the genome were found to affect on development of symptoms resulting in new pathotypes and accumulation of viral RNA. The variability of the PepMV population has a great impact on designing specific diagnostic tools and developing efficient and durable strategies of disease control. In this paper we review the current knowledge about the PepMV population, the evolutionary dynamics of this highly infective virus, methods for its detection and plant protection strategies

    The resistance of sugar beet and its wild relatives from the genus Beta to BNYVV - sources and mechanisms

    No full text
    Rizomania jest chorobą buraka cukrowego wywoływaną przez wirus nekrotycznego żółknięcia nerwów buraka BNYVV, który powoduje znaczące jakościowe i ilościowe straty plonu tej ekonomicznie istotnej rośliny w skali światowej. Za najbardziej skuteczną metodę walki z rozprzestrzenianiem choroby, umożliwiającą uprawę w warunkach porażenia uznaje się stosowanie odmian wyprowadzonych w toku hodowli odpornościowej. Jednakże żaden z dotychczas opisanych genów nie warunkuje całkowitej odporności, a jedynie tolerancję na wirus. Jednocześnie z powodu pojawiania się szczepów zdolnych do przełamywania odporności, przeszukiwanie zasobów dzikich form z rodzaju Beta jest kluczowe dla dalszej identyfikacji nowych źródeł odporności, a w konsekwencji dla utrzymania ciągłej produkcji konkurencyjnych odmian buraka cukrowego. W niniejszej pracy dokonano przeglądu znanych obecnie źródeł odporności, jak również przedstawiono podstawowe mechanizmy istotne dla jej wykształcenia.Rhizomania is a disease of sugar beet induced by Beet necrotic yellow vein virus (BNYVV) that has been responsible for both quantitative and qualitative significant yield losses of this economically important crop worldwide. The most effective method of protection that enables production under infestation conditions is believed to be resistance breeding. However, none of the genes identified thus far seems to be able to condition a fully resistant genotype. Additionally, due to the appearance of resistance-breaking strains of the virus, screening of wild relatives is crucial for further identification of new resistance sources and, consequently, for continuous production of competitive sugar beet cultivars. This review presents an overview of currently known resistance sources as well as highlights some basic mechanisms involved in resistance expression
    corecore