58 research outputs found

    Evaluation of elastic and adhesive properties of solids by depth-sensing indentation

    Get PDF
    To describe properly interactions between contacting solids at micro/nanometre scales, one needs to know both adhesive and mechanical properties of the solids. Borodich and Galanov have introduced an effective method (the BG method) for identifying both characteristics from a single experiment on depth-sensing indentation by a spherical indenter using optimal fitting of the experimental data. Unlike traditional indentation techniques involving sharp indenters, the Borodich-Galanov methodology intrinsically takes adhesion into account. It is essentially a non-destructive approach. These features extend the scope of the method to important applications beyond the capabilities of conventional indentation. The scope of the original BG method was limited to the classic JKR and DMT theories. Recently, this restriction has been overcome by introducing the extended BG (eBG) method, where a new objective functional based on the concept of orthogonal distance curve fitting has been introduced. In the present work, questions related to theoretical development of the eBG method are discussed. Using the data for elastic bulk samples, it is shown that the eBG method is at least as good as the original BG method. It is shown that the eBG can be applied to adhesive indentation of coated, multilayered, functionally graded media

    Conformal Mapping on Rough Boundaries I: Applications to harmonic problems

    Full text link
    The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to "equivalent" smooth interfaces. We study the correlations between the topography and the field at the surface. Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the derivation of Green function for localized flux on the surface of a rough boundary

    Mechanical, Structural and Scaling Properties of Coals: Depth-sensing Indentation Studies

    Full text link
    This paper discusses special features of mechanical behaviour of coals discovered using depth-sensing indentation (DSI) techniques along with other traditional methods of material testing. Many of the special features are caused by the presence of multiscale complex heterogeneous internal structures within the samples and brittleness of some coal components. Experimental methodology for studying mechanical properties of coals and other natural extreme materials like bones is discussed. It is argued that values of microhardness of bituminous coals correlate strongly with the maximum load; therefore, the use of this parameter in application to coals may be meaningless. For analysis of the force-displacement curves obtained by DSI, both Oliver–Pharr and Galanov–Dub approaches are employed. It is argued that during nanoindentation, the integrity of the internal structure of a coal sample within a small area of high stress field near the tip of indenter may be destroyed. Hence, the standard approaches to mechanical testing of coals should be re-examined. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.Acknowledgements Research was supported by the Russian Science Foundation (Grant № 16-17-10217)

    Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation

    No full text
    The experimental and numerical techniques for evaluation of mechanical properties of highly inhomogeneous materials are discussed. The techniques are applied to coal as an example of such a material. Characterization of coals is a very difficult task because they are composed of a number of distinct organic entities called macerals and some amount of inorganic substances along with internal pores and cracks. It is argued that to avoid the influence of the pores and cracks, the samples of the materials have to be prepared as very thin and very smooth sections, and the depth-sensing nanoindentation (DSNI) techniques has to be employed rather than the conventional microindentation. It is shown that the use of the modern nanoindentation techniques integrated with transmitted light microscopy is very effective for evaluation of elastic modulus and hardness of coal macerals. However, because the thin sections are glued to the substrate and the glue thickness is approximately equal to the thickness of the section, the conventional DSNI techniques show the effective properties of the section/substrate system rather than the properties of the material. As the first approximation, it is proposed to describe the sample/substrate system using the classic exponential weight function for the dependence of the equivalent elastic contact modulus on the depth of indentation. This simple approach allows us to extract the contact modulus of the material constitutes from the data measured on a region occupied by a specific component of the material. The proposed approach is demonstrated on application to the experimental data obtained by Berkovich nanoindentation with varying maximum depth of indentation

    Problem of flexure of thick cantilever plate

    No full text
    corecore