172 research outputs found

    Abortive Lytic Reactivation of KSHV in CBF1/CSL Deficient Human B Cell Lines

    Get PDF
    Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade

    Epstein-Barr Virus Stimulates Torque Teno Virus Replication: A Possible Relationship to Multiple Sclerosis

    Get PDF
    Viral infections have been implicated in the pathogenesis of multiple sclerosis. Epstein-Barr virus (EBV) has frequently been investigated as a possible candidate and torque teno virus (TTV) has also been discussed in this context. Nevertheless, mechanistic aspects remain unresolved. We report viral replication, as measured by genome amplification, as well as quantitative PCR of two TTV-HD14 isolates isolated from multiple sclerosis brain in a series of EBV-positive and -negative lymphoblastoid and Burkitt's lymphoma cell lines. Our results demonstrate the replication of both transfected TTV genomes up to day 21 post transfection in all the evaluated cell lines. Quantitative amplification indicates statistically significant enhanced TTV replication in the EBV-positive cell lines, including the EBV-converted BJAB line, in comparison to the EBV-negative Burkitt's lymphoma cell line BJAB. This suggests a helper effect of EBV infections in the replication of TTV. The present study provides information on a possible interaction of EBV and TTV in the etiology and progression of multiple sclerosis

    Epigenetic mechanisms in virus-induced tumorigenesis

    Get PDF
    About 15–20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis
    • …
    corecore