1,066 research outputs found

    Grobner Bases for Finite-temperature Quantum Computing and their Complexity

    Full text link
    Following the recent approach of using order domains to construct Grobner bases from general projective varieties, we examine the parity and time-reversal arguments relating de Witt and Lyman's assertion that all path weights associated with homotopy in dimensions d <= 2 form a faithful representation of the fundamental group of a quantum system. We then show how the most general polynomial ring obtained for a fermionic quantum system does not, in fact, admit a faithful representation, and so give a general prescription for calcluating Grobner bases for finite temperature many-body quantum system and show that their complexity class is BQP

    A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey

    Full text link
    We compare the structural properties of two classes of galaxies at intermediate redshift: those in dynamically close galaxy pairs, and those which are isolated. Both samples are selected from the CNOC2 Redshift Survey, and have redshifts in the range 0.1 < z <0.6. Hubble Space Telescope WFPC2 images were acquired as part of a snapshot survey, and were used to measure bulge fraction and asymmetry for these galaxies. We find that paired and isolated galaxies have identical distributions of bulge fractions. Conversely, we find that paired galaxies are much more likely to be asymmetric (R_T+R_A >= 0.13) than isolated galaxies. Assuming that half of these pairs are unlikely to be close enough to merge, we estimate that 40% +/- 11% of merging galaxies are asymmetric, compared with 9% +/- 3% of isolated galaxies. The difference is even more striking for strongly asymmetric (R_T+R_A >= 0.16) galaxies: 25% +/- 8% for merging galaxies versus 1% +/- 1% for isolated galaxies. We find that strongly asymmetric paired galaxies are very blue, with rest-frame B-R colors close to 0.80, compared with a mean (B-R)_0 of 1.24 for all paired galaxies. In addition, asymmetric galaxies in pairs have strong [OII]3727 emission lines. We conclude that close to half of the galaxy pairs in our sample are in the process of merging, and that most of these mergers are accompanied by triggered star formation.Comment: Accepted for publication in the Astronomical Journal. 40 pages, including 15 figures. For full resolution version, please see http://www.trentu.ca/physics/dpatton/hstpairs

    Dark Matter and Dark Energy via Non-Perturbative (Flavour) Vacua

    Full text link
    A non-perturbative field theoretical approach to flavour physics (Blasone-Vitiello formalism) has been shown to imply a highly non-trivial vacuum state. In a previous work, we implemented the approach on a simple supersymmetric model (free Wess-Zumino), with flavour mixing, which was regarded as a model for free neutrinos and sneutrinos. The resulting effective vacuum (called "flavour vacuum") was found to be characterized by a strong SUSY breaking. In this paper we explore the phenomenology of the model and we argue that the flavour vacuum is a consistent source for both Dark Energy (thanks to the bosonic sector of the model) and Dark Matter (via the fermionic one). Quite remarkably, besides the parameters connected with neutrino physics, in this model no other parameters have been introduced, possibly leading to a predictive theory of Dark Energy/Matter. Despite its oversimplification, such a toy model already seems capable to shed some light on the observed energy hierarchy between neutrino physics, Dark Energy and Dark Matter. Furthermore, we move a step forth in the construction of a more realistic theory, by presenting a novel approach for calculating relevant quantities and hence extending some results to interactive theories, in a completely non-perturbative way.Comment: 14 pages, 2 figure

    Efficient linear solvers for incompressible flow simulations using Scott--Vogelius finite elements

    Get PDF
    Recent research has shown that in some practically relevant situations like multiphysics flows (Galvin et al., Comput Methods Appl Mech Eng, 2012) divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. To judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius (SV) elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements such as Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes and discuss extensions. For iterative methods, we test augmented Lagrangian and H -LU preconditioners with GMRES, on both full and statically condensed systems. Several numerical experiments are provided that show these classes of solvers are well suited for use with SV elements and could deliver an interesting overall performance in several applications
    • …
    corecore