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Abstract

Recent research has shown that in some practically relevant situations like multi-physics flows
[11] divergence-free mixed finite elements may have a significantly smaller discretization error than
standard nondivergence-free mixed finite elements. In order to judge the overall performance of
divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear sys-
tems arising in ((Pk)d, P disc

k−1 )) Scott-Vogelius finite element implementations of the incompressible
Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontin-
uous pressure elements in the case of Scott-Vogelius elements, considerably more solver strategies
seem to deliver promising results than in the case of standard mixed finite elements like Taylor-Hood
elements. For direct methods, we extend recent preliminary work using sparse banded solvers on
the penalty method formulation to finer meshes, and discuss extensions. For iterative methods, we
test augmented Lagrangian and H − LU R preconditioners with GMRES, on both full and stati-
cally condensed systems. Several numerical experiments are provided that show these classes of
solvers are well suited for use with Scott-Vogelius elements, and could deliver an interesting overall
performance in several applications.

1 Introduction

We study efficient solving techniques for linear systems arising from finite element (FE) computations of
the steady Navier-Stokes (NS) and related equations, when using Scott-Vogelius (SV) elements. On a
domain Ω , the steady NS system is given by

u · ∇u +∇p−Re−1∆u = f in Ω (1.1)
∇ · u = 0 in Ω (1.2)
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where (u, p) are the unknowns representing velocity and pressure, Re is the Reynolds number, and
f represents external forcing. This system must be coupled to appropriate boundary and initial
conditions. For simplicity, we assume Dirichlet velocity boundary conditions, and extensions to
other common boundary conditions can be done in the usual way [34]. Under this assumption,
denoting the L2(Ω) inner product by (·, ·) and defining the finite dimensional spaces by (Xh, Qh) ⊂
(H1

0 (Ω)d, L2
0(Ω)), discretizing (1.1)-(1.2) with the FE method leads to the nonlinear problem: Given

f ∈ H−1(Ω), find (uh, ph) ∈ (Xh, Qh) satisyfing ∀(vh, qh) ∈ (Xh, Qh),

−(ph,∇ · vh) +Re−1(∇uh,∇vh) + (uh · ∇uh, vh) = (f, vh), (1.3)

(∇ · uh, qh) = 0. (1.4)

Since this system is nonlinear, solving it requires iteration of linear system solves via methods such
as Newton or Picard; we use only Newton in this work. Solving these linear systems is the primary
interest of this work, and since incompressible, viscous flow simulations arise in many engineering
applications, the ability to efficiently solve such linear systems is of great interest across the scientific
community.

The choice of the discrete spaces Xh and Qh are well-known to be of paramount importance.
Typically, these spaces are chosen to satisfy an inf-sup stability condition [12, 7], as well as optimal
approximation properties [12, 21]. Recent work has found that an additional important criterion
can be that the spaces enforce mass conservation strongly, i.e. ∇ · uh = 0 [8, 9, 25, 24, 26, 23, 22].
Satisfying this criterion leads to more physically relevant solutions, decouples the pressure error
from the velocity error, and removes possible instabilities that can arise from poor discrete mass
conservation [23]. The specific element choice made in these works to achieve pointwise mass
conservation of discrete solutions is the Scott-Vogelius element pair. In the mid-1980’s, L.R. Scott
and M. Vogelius pioneered the use of the (Xh, Qh) := ((Pk)

d(τh), P disck−1 (τh)) mixed FE pair on a
triangular/tetrahedral mesh τh, for Stokes-type problems [32, 31, 35, 36]. Since ∇·Xh ⊂ Qh (which
is quite uncommon in inf-sup stable pairs), the strong enforcement of mass conservation is easily
seen by choosing qh = ∇ · uh in (1.4).

Even though SV elements were developed in the 1980’s, their use did not immediately catch on
as a popular element choice since, at the time, inf-sup stability was not known to hold for lower
order elements. In 1994, [28] Qin showed that if using a mesh created as a barycenter refinement of
a regular triangular mesh, then the SV pair is inf-sup stable in 2D for k ≥ 2. For 3D, in 2005, [38]
S. Zhang showed that inf-sup stability also holds if k ≥ 3 on a barycenter refinement of a regular
tetrahedral mesh. These results have led to a renewed interest in using SV elements. Indeed,
recent work using SV elements with this macro-element structure (see Figure 1) have reported
excellent results for approximating solutions to NS and related equations, both in 2D and 3D
[23, 22, 26, 8, 24, 9].

With the resurgence of interest in SV elements for solving NS and related problems comes the
need for efficient solvers for the arising linear systems. It is the purpose of this paper to explore
several methods of solving linear systems arising from (1.3)-(1.4), when SV elements are used with
k = d and on barycenter refined meshes. Recent results of S. Zhang [39, 40] showed SV elements
are inf-sup stable when k = d−1 if a so-called Powell-Sabin[39] mesh is used. However, we consider
such meshes to be more restrictive than a simple barycenter refinement, and so we believe the case
of k = d on a barycenter refined mesh is the most practically relevant.

This paper is arranged as follows. Section 2 tests a direct solver on the penalty method for-
mulation of the NS system. Recent work in [25] has shown that in settings where SV elements are
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Figure 1: 2D (left) and 3D (right) macro-element sufficient for LBB stability of ((Pk)
d, Pk−1) SV

elements when k ≥ d. Dashed lines represent barycenter refinements.

inf-sup stable, as the penalty parameter →∞, the penalty method formulation solution converges
to the SV solution (assuming it is unique; if not, there is a result for subsequences to converge to
a SV solution). Work in [27] showed that the linear systems arising from this technique can be
solved efficiently with a sparse solver, and give excellent accuracy, and herein we extend this test-
ing to finer meshes and discuss extensions. Section 3 details the implementation and motivation of
several solving methods used herein, including static condensation, AL preconditioning, and H-LU
preconditioning. In section 4, we provide several numerical experiments that compare the methods,
and show when each are effective. Conclusions and future directions are discussed in Section 5.

2 Direct methods for solving linear systems arising from SV dis-
cretizations

It was found in [27] that in the setting where SV elements are inf-sup stable, the classical penalty
method of Temam [33] used with direct solvers can be an effective approach for approximating NS
solutions. This approach entails eliminating the saddle point structure in the NS problem at the
continuous level by using an artificial pressure regularization in the continuity equation, then using
the altered equation to eliminate the pressure in the momentum equation. In the steady case, after
discretizing the steady NSE, we get

ε−1(∇ · uh,∇ · vh) +Re−1(∇uh,∇vh) + (uh · ∇uh, vh) = (f, vh), (2.1)

instead of (1.3)-(1.4). Note if ε is small, the divergence constraint will be enforced through the
least squares penalty (grad-div stabilization) term ε−1(∇ · uh,∇ · vh). Pressure is recovered by
ph = −ε−1(∇ · uh).

The system (2.1) can have numerical issues when ε is small for two reasons. First, there is
typically no guarantee that the divergence free subspace of Xh has optimal approximation proper-
ties. Thus, solutions to (2.1) can be suboptimal, as is shown in [9]. However, in settings where SV
elements are inf-sup stable (e.g. barycenter refined triangular meshes and k ≥ d), we do know that
the divergence free subspace of Xh has optimal approximation properties [38, 28], and so taking ε
small in these settings will not cause suboptimal accuracy. Second, the condition number of the
linear systems resulting from (2.1) will scale with ε−1. Hence taking ε too small will lead to accuracy
problems in the linear solves. It was shown in [27] that this penalty method approach (2.1), when
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used on a barycenter refined mesh, k = d, and ε = 10−4 can give excellent results, and the resulting
linear systems were able to be solved quite efficiently using Matlab’s ‘backslash’. However, those
results were for rather small systems, and we extend this testing here to much larger systems.

We give two numerical tests for this method, one in 2D and one in 3D. The nonlinear system
(2.1) is resolved using Newton’s method, and for all tests, we take the initial condition u0= 0 +
boundary conditions, as the initial guess. The stopping criterion for Newton is a relative update
size less than 10−8 in the natural solution norm

‖(u, p)‖ :=
√
‖∇u‖2 + ‖p‖2.

The 2D computations were run with Matlab 2011a, on a 2x 2.66 GHz Quad-Core Intel Xeon
processor, using 32GB 1066 MHz DDR3 memory. The 3D computations were run with Matlab
2011b, on a 4x 2.40 GHz Ten-Core Intel Xeon processor, using 1024GB 1067Mhz unregistered
DDR3 memory.

2.1 2D test problem for direct solver: 2D driven cavity

Our first test is the benchmark problem of 2D driven cavity flow. The domain is the unit square,
no-slip boundaries are enforced on the sides and bottom, and on the top (the lid), ulid = 〈1, 0〉T
is imposed as a Dirichlet boundary condition. We test with Re := ν−1 =100, and the solution is
known to be steady. We use (P2, P

disc
1 ) SV elements on barycenter refined meshes generated from

barycenter refined uniform triangulations, with the artificial compressibility parameter is chosen to
be ε = 10−4.

Timings, dof, and divergence error for these tests are given in Table 1. In all cases, the divergence
error is of the order of 10−5 or better, which is as expected since ε = 10−4. Solve times are observed
to be quite fast, and scale very well with dof until the finest meshes are used, and the scaling of the
finest two meshes is nearly linear. A plot of the computed velocity solution from the finest mesh is
shown in Figure 2, and agrees very well with the solutions to this problem found in the literature
[20]. Solutions on the other meshes gave indistinguishable plots.

We also ran this test problem for Re=1,000, and found similar results. That is, computed
solutions matched the known solution very well, and timings of the linear solves were nearly identical
to the Re=100 case on respective meshes, which is as expected for a direct solver.

X

Y

Re=100 Re=1,000

X

Y

Figure 2: Velocity solution for the 2D driven cavity with Re=100 and Re=1,000.
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H dim(Xh) Time (sec.) ‖∇ · uh‖
1/16 7,258 0.07 7.29E-6

1/32 29,370 0.39 8.21E-6

1/64 117,106 1.65 8.94E-6

1/96 221,954 3.35 9.34E-6

1/128 394,242 6.59 9.60E-6

1/256 1,575,914 27.77 9.83E-6

1/512 4,718,590 140.71 1.07E-5

Table 1: Solve times, mass conservation and dof for (2.1) solved for the 2D driven cavity at Re=100,
using Matlab ‘backslash’ as the direct solver.

2.2 3D test problem for direct solver: 3D driven cavity

We now investigate solving the 3D driven cavity problem for NS at Re=100, which is known
to have a steady solution. Here Ω = (0, 1)3, the moving lid is represented by the boundary
condition u(x, y, 1) = 〈1, 0, 0〉T , while the sides and bottom of the cavity are prescribed no-slip
boundary conditions. We use k = 3, and compute on barycenter refined uniform meshes. The
artificial compressibility parameter was chosen to be ε = 10−4, and the nonlinearity is resolved
using Newton’s method. Plots of the mid-sliceplances for Re = 100, H = 1/6 are shown in Figure
3, which agrees with plots given in the literature [37]. Plots for smaller H are indistinguishable
from these, and so are omitted.

x

y

x

z

y

z

Figure 3: Midsliceplanes of the velocity fields for the solution of the 3D driven cavity (Re=100).

Solve times, divergence errors, and dof are shown in Table 2, and we observe the method is
efficient even at higher dof; for the 3.7 million dof system, it takes about an hour to do the solve.
The accuracy in mass conservation of the solutions is of the order of 10−5; exact mass conservation
cannot be expected since the penalty method system does not conserve mass exactly if ε > 0.

2.3 Discussion

The results above indicate that the penalty method used with Matlab’s ‘backslash’ direct solver
can be quite effective on mid-size problems. In 2D, it worked well even on our finest mesh, which
provided nearly 5 million velocity degrees of freedom (dof). In 3D, the efficiency of the method
appears to scale well in the dof up to about 3 million velocity dof, but turns worse for even higher
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H dim(Xh) time (sec.) ‖∇ · uh‖
1/2 3,189 0.06 4.05E-6

1/4 23,871 0.97 5.68E-6

1/6 78,897 4.93 6.45E-6

1/8 185,115 13.31 6.94E-6

1/10 359,373 42.48 8.15E-6

1/12 618,519 130.58 7.56E-6

1/14 979,401 244.47 7.68E-6

1/16 1,458,867 535.22 7.95E-6

1/18 2,073,765 1,181.00 8.10E-6

1/20 2,840,943 2,193.31 8.23E-6

1/22 3,777,249 3,711.66 8.34E-6

1/24 4,899,531 6,761.46 8.44E-6

1/26 6,224,637 11,258.09 8.53E-6

1/28 7,769,415 17,869.61 8.62E-6

Table 2: Solve times, divergence errors and dof for the 3D Re=100 driven cavity tests using (2.1)
and Matlab’s backslash for the linear solver.

numbers. Moreover, since the solver is direct, the solver’s efficiency does not depend on Re, and
we observed no deterioration of the solver when Re was increased.

It is important to note that the accuracy of the method is limited by the choice of the penalty
parameter, and thus with a fixed ε, locking phenomena of the accuracy will occur on very fine
meshes. We have found ε can be reduced below 10−4 without affecting the solver efficiency, but
since conditioning of the matrices scales with ε−1, taking ε too small can cause significant inaccuracy
in the linear solves. One fix for finer meshes is to use the iterated penalty method discussed by S.
Zhang in [40], which is given for the steady NS system by

α(∇ · umh ,∇ · vh) +Re−1(∇umh ,∇vh) + (umh · ∇umh , vh) = (f, vh) +

∇ · m−1∑
j=0

ujh,∇ · vh

 . (2.2)

In a setting where SV is inf-sup stable, this iteration will converge to the optimally accurate SV
solution. Note if only one iteration is performed, we recover the penalty method system (2.1). We
also observe that for each subsequent iteration, this nonlinear system is the same as (2.1), except
for the last term on the right hand side. Hence on finer meshes, accuracy locking can be avoided
at the expense of doubling or tripling the number of linear solves performed. If one can save the
factorization of the first solve (which may or may not be possible), this can be an efficient and
accurate method. An important open question concerning (2.2) is whether preconditioned iterative
methods can be developed to efficiently solve the resulting linear systems (i.e. after linearization
by Newton or Picard), when α is large enough so that convergence can be reached quickly (e.g.
α ≥ 100). The only work in this direction that we are aware of is a geometric multigrid algorithm by
J. Schöberl[30] with the special property that the prolongation operator maps discretely divergence-
free coarse grid functions to discretely divergence-free fine grid functions. For that, the author
exploits additional knowledge about the basis of the space of discretely divergence-free functions
for the P2-P0 element.
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Finally, we note that the method described above does not appear to work better on statically
condensed systems (see section 3.1). Roughly speaking, it is folklore (i.e. hoped) that good direct
solvers will find and exploit the structure in the full system matrix, that would have allowed for
static condensation in the first place. We performed tests both with Matlab’s backslash and the
direct solver Pardiso[29], both of which did not give improvement over solving the full system that
would justify the extra work associated with performing the static reduction.

3 Iterative methods for solving linear systems arising from SV
discretizations

We turn our attention now to iterative solvers for the linear systems arising from (1.3)-(1.4). As seen
in the previous section, direct solvers fail to be efficient on sufficiently fine meshes and/or large
problems. Iterative solvers offer an alternative that scales better with larger dof and increased
number of processors. We investigate herein two methods, which seem well suited for use with
SV: augmented Lagrangian based preconditioned GMRES, and H-LU preconditioned GMRES. A
key to the success of these methods is combining them with static condensation, which, when used
with SV and its required macro-element structure when k = d, dramatically reduces the size of the
global system matrices. This section will first discuss static condensation applied to SV systems
on barycenter refined meshes, then introduce the preconditioners.

3.1 Static condensation of SV systems on barycenter-refined meshes

The classical idea of static condensation (SC) is to remove from the global system the dof with
only local support on a macro-element, by locally solving for these internal dof in terms of the
dof with support outside the macro-element. This creates a smaller global system solve, and after
the global solve is performed, internal degrees of freedom are easily recovered. The use of SC in
solving Stokes/NS type problems was made popular by Arnold, Brezzi and Fortin [1], who used
it to remove the cubic bubble function of the (P bub1 , P1) element from the global linear system.
With the improvements in algorithms for linear solvers in recent years, lately this process can
be overlooked and even avoided, as a modest reduction size may not be worthwhile if the sparsity
structure of the reduced system is adversely affected. For SV elements on barycenter refined meshes,
however, a very significant size reduction is possible because the macro-element structure creates
locally supported velocity dof, and since pressures are approximated by discontinuous polynomials,
all pressure dof have only local support, although one pressure dof must remain on each macro-
element to maintain the global coupling of pressure to the divergence constraint. We will show
now that the size reduction offered by SC for SV is quite dramatic. Consider the ((P2)

2, P disc1 ) SV
pair on a barycenter-refined triangulation. A diagram of the macro-element and the location of
its dof is shown in Figure 4. Here we count 10 velocity nodes and 9 pressure nodes, and thus 20
velocity dof and 9 pressure dof, and observe that 8 internal velocity dof, and all 9 of the pressure
dof, have support only in the macro-element. Denoting the (exterior) edge velocity dof by ue, the
locally supported velocity dof by ui, a single pressure pe, and the remaining 8 pressures by pi, we
have the following linear system resulting from a Newton or Picard iteration of (1.3)-(1.4) on each
macro-element:
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Velocity and Pressure Nodes for (P2,P1
d) Scott Vogelius 

macro element

Figure 4: The 2D macro-element structure and degree of freedom locations for the k = 2 SV
elements. Blue dots are for velocity nodes (so 2 velocity dof at each), and red asterisks are for
pressure dof.


A11 A12 BT

1 bT1
A21 A22 BT

2 bT2
B1 B2 0 0
b1 b2 0 0




ue
ui
pi
pe

 =


f1
f2
g1
g2

 , (3.1)

where A11 is 12× 12, A22 is 8× 8, B1 is 8× 12, B2 is 8× 8, b1 is 1× 12, b2 is 1× 8, A12 is 12× 8,
and A21 is 8× 12. Swapping the last row and column with the ninth row and column, respectively,
gives 

A11 bT1 A12 BT
1

b1 0 b2 0
A21 bT2 A22 BT

2

B1 0 B2 0




ue
pe
ui
pi

 =


f1
g2
f2
g1

 . (3.2)

Rewriting the 4× 4 system’s pieces as 2× 2 blocks as

M̃11 :=

(
A11 bT1
b1 0

)
, M̃12 :=

(
A12 BT

1

b2 0

)
, M̃21 :=

(
A21 bT2
B1 0

)
,

M̃22 :=

(
A22 BT

2

B2 0

)
, xe :=

(
ue
pe

)
, xi :=

(
ui
pi

)
, f̃1 :=

(
f1
g2

)
, f̃2 :=

(
f2
g1

)
,

the local system can be represented by(
M̃11 M̃12

M̃21 M̃22

)(
xe
xi

)
=

(
f̃1
f̃2

)
.

The key for reducing this system is to observe that M̃22 is nonsingular. We refer to [10] for the
solvability of such systems, but a simple way to think of it is that if the entire domain were just
this macro-element and Dirichlet boundary conditions were being used, then removing a pressure
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dof, which is done in our system by the row and column swaps, creates a global system matrix
identical to M̃22 which is known to be nonsingular. Therefore, we can write the second row of the
system as

xi = M̃−122 (f̃2 − M̃21xe),

which yields, after substitution into the first row,(
M̃11 − M̃12M̃

−1
22 M̃21

)
xe = f̃1 − M̃12M̃

−1
22 f̃2. (3.3)

Assembly of a global system now only needs to contain ue and pe from each element. For this
example, this means only 13 of the 29 local degrees of freedom contribute to the global system
matrix. Note that since the remaining velocity dof are only on the exterior edges of each macro-
element, the faces of the barycenter macro-element are faces of its interior elements, and only one
pressure dof is retained on each macro-element.

An example of the reduction of the system sizes resulting from static condensation in 2D is
shown in Table 3, when using (Xh, Qh) := ((P2)

2, P disc1 ) SV elements on a barycenter refined
uniform triangulation of the unit square. The mesh is created by dividing into squares with side
length H, then cutting the squares into 2 triangles, and finally a barycenter refinement is applied.
(Xsc

h , Q
sc
h ) represent the statically condensed velocity-pressure spaces. We observe from the table

that the total degrees of freedom are cut dramatically.

Level H dim(Xh) dim(Qh) Total (full) dim(Xsc
h ) dim(Qsch ) Total (reduced)

1 1/16 7,258 5,346 12,604 2,506 594 3,100

2 1/32 29,370 21,834 51,204 9,962 2,426 12,388

3 1/64 117,106 87,444 204,550 39,378 9,716 49,094

4 1/96 221,954 165,888 387,842 74,498 18,432 92,930

5 1/128 394,242 294,912 689,154 132,098 32,768 164,866

Table 3: System size reduction of ((P2)
2, P disc1 ) SV elements on a barycenter-refined uniform mesh

of the unit square, by static condensation, for the 2D driven cavity test problem.

For the 3D case, analogous arguments and local matrix manipulation can be used to reduce
the global system size. The usual choice of degree of the polynomial for velocities for SV in 3D is
k = 3 (recall k ≥ d is required for stability), and so pressures are approximated with discontinuous
quadratics. A barycenter refinement of a tetrahedron produces 4 tetrahedra, and so there will be 40
pressure dof per macro-element, 39 of which can be condensed (by the same argument as in the 2D
case). For velocity, of the 125 total degrees of freedom provided by P3 approximating polynomials
on each macro-element, 45 have only local support. Thus the amount of condensation for this
element is quite dramatic; however, for this case we must locally invert an 84× 84 matrix on each
macro-element. We contend this can be done efficiently and accurately, and can be distributed
across processors if the assembly is done in parallel. A single inversion of a random 84× 84 matrix
takes on average 0.001 seconds in Matlab, on a Mac Workstation with 2 x 2.66 GHz Quad-Core
Intel Xeon processor and 32 GB 1066 MHz DDR3 memory. This explicit inversion must be done as
many times as there are macro-elements, and then matrix multiplication with the inverse must be
done to recover the condensed dof. In our 3D computations, this added about 20% to our assembly
time, but this increase is negligible compared to the savings in solve time. Note also that if the
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local inverse matrices are saved, then recovery of the internal dof can be done with a single matrix
multiplication. Otherwise, since this recovery is purely a local operation, it can be split across
processors.

For a 3D example of the amount of reduction offered, consider τH to be a uniform tetrahedral-
ization of the unit cube, where the unit cube is split into cubes with side length H, and then each
cube is split into 6 tetrahedra. The finer mesh τh is then created as a barycenter refinement of τH ,
where each tetrahedron is split into 4 tetrahedra. The velocity-pressure space (Xh, Qh) is defined by
((P3)

3, P disc2 ) elements, and (Xsc
h , Q

sc
h ) is the statically condensed velocity-pressure spaces. Table

4 shows the dof associated with each of these spaces, for several mesh levels, and we observe the
dramatic reduction of dof in the condensed system.

Level H dim(Xh) dim(Qh) Total dim(Xsc
h ) dim(Qsch ) Total

1 1/2 3,189 1,920 5,109 1,029 48 1,077

2 1/4 23,871 15,630 39,231 6,591 384 6,975

3 1/6 78,897 51,840 130,787 20,577 1,296 21,873

4 1/8 185,115 122,880 307,995 46,875 3,072 49,947

5 1/10 359,373 240,000 599,373 89,373 6,000 95,373

6 1/12 618,519 414,720 1,033,239 151,959 10,368 162,327

Table 4: System size reduction of ((P3)
3, P disc2 ) SV elements on a barycenter-refined mesh, made

by using static reduction.

3.2 A modified-AL preconditioner for GMRES

We now briefly present the modified AL-preconditioner of Benzi and Olshanskii [4], which is de-
signed for use with GMRES, and discuss why it fits well for solving the condensed global system.

The system (1.3)-(1.4) leads to the block linear system(
A BT

B 0

)(
u
p

)
=

(
f
g

)
, (3.4)

Following [5], the equivalent AL formulation is(
A+ γBTW−1B BT

B 0

)(
u
p

)
=

(
f̂
g

)
, (3.5)

where f̂ = f + γBTW−1g, W is an arbitrary symmetric positive definite (SPD) matrix and γ > 0.
Typically W is taken to be the diagonal of the pressure mass matrix Mp. Denoting Aγ := A +
γBTW−1B, an ideal preconditioner for (3.5), when used with GMRES, (see [5, 4]) is given by

P =

(
Aγ BT

0 −γ−1W

)
. (3.6)

For large systems, it is not practical to use such a preconditioner, as it requires exact solves
using Aγ . Thus, some approximation needs to be made, and for this we employ the modified
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AL idea of Benzi and Olshanskii [4]. Assuming for simplicity d = 2 (d = 3 follows analogously),
A = (A11, A12;A21, A22), and writing B = (B1, B2), we have

Aγ =

(
A11 + γBT

1 W
−1B1 A12 + γBT

1 W
−1B2

A21 + γBT
2 W

−1B1 A22 + γBT
2 W

−1B2

)
:=

(
Ã11 Ã12

Ã21 Ã22

)
. (3.7)

Defining

Ãγ :=

(
Ã11 Ã12

0 Ã22

)
,

the modified-AL preconditioner is defined by

P̃ =

(
Ãγ BT

0 S̃

)
. (3.8)

where S̃ is typically chosen to be some approximation to Mp. However, in our statically condensed
systems, the pressure space is effectively the same as for P0 elements elements (in 2D or 3D), leaving
Mp diagonal, and thus S̃ = −γ−1Mp can be used.

One reason this preconditioner appears well suited for the reduced SV systems is because the
pressure space of the reduced system is equivalent to using P0 elements on the pre-refined mesh
τH , and thus the pressure mass matrix Mp will be diagonal, and B and BT matrices will be much
sparser than if a higher order pressure basis was used (e.g. as in Taylor-Hood elements, where
pressure basis functions have support on adjacent elements). Consequently, the diagonal blocks of
Ãγ are sparser compared to typical element choices.

3.3 H-LU preconditioned GMRES

H-matrices were introduced in [17] and since then have entered into a wide range of applications.
The basic H-matrix construction and corresponding arithmetic have reached a relatively mature
state and are documented in the comprehensive lecture notes [6] and books [3, 18].
H-matrices are based on a hierarchical subdivision of the matrix into subblocks and low-rank

approximations of matrix data within (most of) these subblocks. Originally, H-matrices were
introduced in the context of fully populated matrices arising from solution operators of elliptic
differential equations and in boundary element methods. In the finite element context, the stiffness
matrix itself does not require an efficient approximation by an H-matrix since it is sparse. Its LU-
factors, however, suffer from inacceptable fill-in if computed exactly and can be efficiently computed
or approximated by H-LU factors [16, 2]. The H-matrix construction and arithmetic as originally
developed for fully populated matrices have a straightforward generalization to sparse matrices.
However, there are two modifications for H-matrices which have been designed for sparse matrices
in particular and have been used here.

In this section, we will specify the particular variant of H-matrix construction which is proposed
for the H-LU factorization of the reduced matrix to be used as a preconditioner in the GMRES
method, and point to the literature for further details on H-matrices.

The first modification concerns the construction of the block structure of the H-matrix. In the
classical H-matrix, the block structure is generated through a repeated bisection of the respective
index sets, i.e., row and column index sets are divided into two subsets, respectively, which leads

11



to four matrix subblocks. In the case of sparse matrices, the bisection has been replaced by a
nested dissection approach in which row and column index sets are divided into three subsets each;
two subsets S1, S2 of indices that are pairwise disconnected in the sense that aij = 0 = aji if
i ∈ S1, j ∈ S2 where A = (aij) denotes the stiffness matrix, and a third subset S3 containing the
remaining indices of the interior boundary. Such a subdivision results in a 3 × 3 matrix structure
with zero blocks in the 1 × 2 and 2 × 1 positions. These zero blocks remain zero in a subsequent
LU factorization which results in considerably faster (H-)LU factorizations compared to bisection-
based H-matrices [19, 15]. The blocks are subdivided recursively until a minimum blocksize nmin
is reached, i.e., a block is further subdivided if the minimum of its number of rows and columns is
greater than nmin. In the subsequent numerical results in section 4, we set nmin = 128.

The second modification concerns the development of a “blackbox” clustering algorithm. The
classical construction of H-matrices requires geometric information associated with the underlying
indices in order to determine a suitable block structure. For sparse matrices, the information
contained in the associated matrix graph can replace the need for geometric information [14].

Whereas the classical H-matrix uses a fixed rank for the low rank approximations within matrix
subblocks, it is possible to replace it by adaptive ranks in order to enforce a desired accuracy within
the individual blocks. In particular, given a matrix block C and a desired H-accuracy 0 < δH < 1,
we set the rank kC of the approximation to C as

kC := min{k′ | σk′ ≤ δHσ1} (3.9)

where σi denotes the i’th largest singular value of C. A decrease in δH leads to an increase in the
accuracy of the H-LU factorization, i.e., an improved preconditioner, at the expense of increased
setup times and storage requirements.

These modifications from the classical H-matrix setting have led to highly efficient H-LU pre-
conditioners for a wide range of sparse matrices [13].

4 Numerical experiments

We now test the preconditioned iterative methods and static condensation described above on some
benchmark NS test problems. We solve the nonlinear system (1.3)-(1.4) using Newton’s method,
and test the methods on the resulting linear systems. For all tests, we take u0= 0 + boundary
conditions, as the initial guess. The stopping criteria for Newton is a relative update size less than
10−8 in the natural solution norm

‖(u, p)‖ :=
√
‖∇u‖2 + ‖p‖2.

All computations, except those using H-LU preconditioning (due to licensing issues), were run
with Matlab 2011a, on a 2x 2.66 GHz Quad-Core Intel Xeon processor, using 32GB 1066 MHz
DDR3 memory. The H-LU preconditioned GMRES were run on a Dell Latitude E6500 notebook
(2.80GHz, 8GB). GMRES was set to restart after every 50 iterations for all tests. For the modified-
AL preconditioned GMRES solver, we chose ILU to approximately solve the subproblems. Although
this is effective, there are many possible variations (and thus improvements) that can be made, such
as algebraic multigrid method as solvers for diagonal blocks, inner-outer iterations and so forth.
We plan to consider other strategies in future work, but for now we choose ILU for its simplicity
and to set a starting point from which improvements can be made. The drop tolerance for ILU
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was optimized for each problem, as was the AL parameter γ. The optimal parameters turned out
to be essentially mesh independent, but were determined essentially by brute force. We note the
mesh independence of optimal γ was also reported in [5].

4.1 3D problem with known analytical solution

Our first experiment is a comparison of SV and Taylor-Hood (TH) approximations to a known
analytical solution, for the purpose of comparing accuracy, including accuracy in mass conservation.
The purpose of this simple test problem is to compare velocity and divergence errors for these very
similar elements. We leave solver comparisons for experiments that follow.

We compute on a uniform barycenter refined tetrahedral mesh, and use ((P3)
3, P disc2 ) SV el-

ements and ((P3)
3, P2) TH elements. We note these elements have the same velocity space, and

differ in their pressure spaces in that SV has discontinuous pressures while TH uses a globally
continuous pressure approximation. Both of these element choices are known to be inf-sup stable
and admit optimal approximation properties in this setting. A major advantage of using SV is that
it gives pointwise mass conservation, while mass conservation in TH is not exact, although it is
bounded by the H1 velocity error (which is optimal for TH elements). Hence we expect

‖∇ · uSVh ‖ = O(εmach)

‖∇ · uTHh ‖ = O(h3),

however in practical computations there is a minimum h one can use, and so here we will quantify
the mass conservation errors for both element choices.

This test problem uses Ω = (0, 1)3, the steady analytical solution

u = (cos(2πz), sin(2πz), sin(2π(x+ y)))T , p = sin(2π(x+ y + z))

with ν = 1, and f calculated from this and the steady NS equations. We use this f , and Dirichlet
boundary conditions taken to be the interpolant of the solution at the boundary nodes, and initial
condition u0 = 0 but equipped with the boundary condition, and solved (1.3)-(1.4).

The results of the computations are given in Table 5 as the H1 velocity errors and L2 divergence
errors, and we observe that TH has slightly better H1 error on each mesh, but the divergence errors
for TH are large while the divergence errors for SV are very small even on the coarsest mesh.

4.2 3D driven cavity

We now investigate the proposed methods on the 3D driven cavity problem for Re=100 (the same
test problem as is used in Section 2). We compute using (1.3)-(1.4) with both ((P3)

3, P disc2 ) SV
elements and ((P3)

3, P2) TH elements, using barycenter refinements of uniform tetrahedral meshes.
We compare the iterative solvers with SV on the condensed and non-condensed systems, and TH
on the non-condensed system (condensing TH systems is not worth the effort, as there is not much
reduction, and the resulting condensed systems are much more difficult to solve). Also, we note
that the H-LU preconditioned GMRES converged only on the condensed SV systems.

For modified AL preconditioned GMRES, optimal parameters for condensed SV were γ = 0.005
and an ILU drop tolerance of 10−3, while for the non-condensed SV system we used γ = 0.05 and an
ILU drop tolerance of 10−2. Using a smaller tolerance for the non-condensed systems became very
inefficient in setup times. For AL preconditioned GMRES we used 10−6 relative residual stopping
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Mesh level Element dim(Xh) dim(Qh) ‖u− uh‖1 ‖∇ · uh‖
1 TH 3,189 365 6.48E-1 1.68E-1

1 SV 3,189 1,920 7.12E-1 6.24E-10

2 TH 23,871 2,649 1.93E-2 7.11E-2

2 SV 23,871 15,360 7.82E-2 3.59E-10

3 TH 78,897 8,677 5.78E-2 2.07E-2

3 SV 78,897 51,840 2.28E-2 1.63E-10

4 TH 185,115 20,273 8.67E-3 2.46E-3

4 SV 185,115 122,280 9.56E-3 1.78E-10

5 TH 359,373 39,261 8.02E-3 2.33E-3

5 SV 359,373 240,000 8.85E-3 3.06E-10

6 TH 618,519 67,465 2.55E-3 7.33E-4

6 SV 618,519 414,720 2.81E-3 9.14E-12

Table 5: Shown above are velocity and divergence errors for SV and TH for test problem 1.

criteria, and for H-LU preconditioned GMRES, we used a relative residual stopping criteria of
10−12, and use a relative accuracy of δH =1E-3 (see (3.9)). The reason for the small stopping
criteria is that with H-LU, it typically takes just a few extra iterations to reduce the residual
past 10−6 to 10−12, and so we take advantage of that here. We also test TH with modified AL
preconditioned GMRES, and found optimal γ = 0.03 and ILU drop tolerance of 10−2. The timings,
iteration counts, and divergence errors of the methods are shown in Table 6 and Figure 5. The
mesh levels used in the table are the same as the previous experiment.

It is immediately clear from Table 6 and Figure 5 that TH with the modified AL preconditioner
is not competitive on this problem, for two reasons. First, the setup times are much worse than
the other methods. This is not unexpected because two of the other methods are on condensed
systems, and the sparsity of the matrices associated with the pressure space are much denser than
in the SV case. A second serious problem with TH (independent of the preconditioner) is that the
mass conservation cannot shrink as the mesh is refined. TH mass conservation is controlled by the
H1 velocity error, which does not tend to 0 for this problem due to the (nonphysical) discontinuous
velocity boundary condition. Plots of the Mesh level 5 TH solution’s divergence contours are shown
in Figure 6 at the midsliceplanes, and we observe the large divergence error are near intersection
of the lid and walls, where the discontinuity in the boundary occurs.

For the methods used with SV, modified AL preconditioned GMRES appears to be the best. It
has the best setup and iteration times, and the scaling of iterations with mesh refinement appears
to be growing slowly. The advantage of using static condensation is clear, as in no way is the
non-condensed system competitive.

The results of H-LU preconditioner are interesting. We note again that due to licensing issues,
the H-LU timings were not run on the same machine or with the same software as the rest of
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Mesh level Total dof Element, full/red Method setup(s.) iter.(s.) iterations ‖∇ · uh‖
1 1,077 SV, red Mod-AL GMRES 0.01 0.20 69.3 1.45E-13

1 5,109 SV, full Mod-AL GMRES 0.15 0.34 39.8 8.24E-13

1 3,554 TH, full Mod-AL GMRES 0.26 0.18 26.3 2.93E-1

1 1,077 SV, red HLU GMRES 0.07 0.01 12.0 4.33E-12

2 6,975 SV, red Mod-AL GMRES 0.29 1.29 113.3 1.83E-10

2 39,231 SV, full Mod-AL GMRES 1.27 2.94 47.0 1.87E-10

2 26,520 TH, full Mod-AL GMRES 11.46 2.26 47.8 3.38E-1

2 6,975 SV, red HLU GMRES 7.28 0.23 22.0 1.81E-11

3 21,873 SV, red Mod-AL GMRES 3.25 5.93 131.5 1.76E-11

3 130,787 SV, full Mod-AL GMRES 7.81 13.67 70.8 7.79E-11

3 87,574 TH, full Mod-AL GMRES 93.14 11.89 82.75 3.35E-1

3 21,873 SV, red HLU GMRES 89.60 1.82 31.0 2.76E-11

4 49,947 SV, red Mod-AL GMRES 15.01 13.27 144.3 1.65E-11

4 307,995 SV, full Mod-AL GMRES 30.39 47.05 114.8 7.52E-11

4 205,388 TH, full Mod-AL GMRES 336.26 42.64 133.00 3.35E-1

4 49,947 SV, red HLU GMRES 283.85 7.15 44.0 3.47E-11

5 95,373 SV, red Mod-AL GMRES 50.76 29.45 167.0 1.51E-11

5 599,373 SV, full Mod-AL GMRES 91.73 109.39 131.0 2.10E-10

5 398,634 TH, full Mod-AL GMRES 1,425.13 92.02 142.50 3.37E-1

5 95,373 SV, red HLU GMRES 738.87 70.67 194.0 4.33E-11

6 162,327 SV, red Mod-AL GMRES 164.42 51.52 163.5 1.27E-11

6 1,033,239 SV, full Mod-AL GMRES 197.80 606.54 220.8 1.13E-10

6 685,984 TH, full Mod-AL GMRES 2,856.58 428.02 242.50 3.37E-1

6 162,377 SV, red HLU GMRES 1,891.21 71.73 90.0 5.56E-11

Table 6: Solve times and mass conservation of the methods for the 3D Re=100 driven cavity
problem.

the tests. Still, we can safely conclude that the setup time is not good compared to the modified
AL preconditioner. However, the iteration time compares well with modified AL preconditioned
GMRES, and the number of iterations it needs to converge is generally smaller. Hence for time
dependent problems on large distributed systems, this method may be attractive for problems
where the preconditioner can be reused many times.

4.3 Test problem: 2D driven cavity

Our final test is the benchmark problem of 2D driven cavity flow, which is the same test problem as
is done for the direct solver in Section 2, but now we test the iterative solvers with it. We consider
here two Reynolds numbers, Re=100 and Re=1,000, using (P2, P

disc
1 ) SV elements on barycenter

refinements of uniform triangulations. We test the same methods as the previous experiment, but
due the poor performance of TH elements in previous experiments, we test only using SV here.

For AL-preconditioned GMRES, we used 10−6 relative residual stopping criteria, and ILU for
the inner solves with drop tolerance of 10−4 in all cases (smaller drop tolerances of 10−5 and 10−6

made little difference in number of iterations needed). Optimal γ for each case was determined by
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Figure 5: Shown above are plots of setup and solve times vs dof, for the Re=100 2D test.

brute force to an accuracy of 0.001, and the optimal parameters were found to be mesh independent.
These γ are given with the results in Tables 7 and 8. The H-LU preconditioned GMRES solver
used the relative accuracy δH =1E-4 (see (3.9)), and a stopping criteria of 10−12 for the relative
residual was used. As in the 3D case, the reason for such a small stopping criteria is that lowering it
does not cost much to do so; roughly speaking, most of the work is done in the setup. As in the 3D
case, H-LU was effective only on the reduced systems. Solutions plots using the different solving
methods were indistinguishable (and so are omitted), and on the finer meshes, agree very well with
the solutions to this problem found in Section 2 with the direct solver and in the literature [20].

Results for this test problem are given in Table 7 and Figure 7 for Re=100, and in Table 8 and
Figure 8 for Re=1,000. All methods’ solutions have excellent mass conservation. As in the 3D case,
static condensation significantly reduces solve times with the modified AL preconditioned GMRES
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driven cavity simulations with TH elements.
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method, and theH-LU preconditioned GMRES only converges with the condensed system. What is
most interesting in these results are the timings for H-LU: setup time is poor, but in most cases the
solve time is competitive or better than the other methods. Hence H-LU preconditioned GMRES
may be a good solver candidate for time dependent NSE type problems where the preconditioner
setup is reused many times.

H full/red Total dof Method γ setup(s.) iter.(s.) avg iterations ‖∇ · uh‖
1/16 red 3,100 Mod-AL GMRES 0.005 0.02 0.18 36.4 2.94E-14

1/16 full 12,604 Mod-AL GMRES 0.05 0.11 0.21 21 6.02E-14

1/16 red 3,100 HLU GMRES - 0.26 0.02 6 3.99E-11

1/32 red 12,388 Mod-AL GMRES 0.005 0.16 0.45 37.8 2.54E-14

1/32 full 51,204 Mod-AL GMRES 0.05 0.84 0.81 21.8 4.47E-14

1/32 red 12,388 HLU GMRES - 1.75 0.15 9 8.61E-11

1/64 red 49,094 Mod-AL GMRES 0.005 0.99 1.73 39.4 2.34E-14

1/64 full 204,550 Mod-AL GMRES 0.05 5.11 4.26 28.8 3.03E-14

1/64 red 49,094 HLU GMRES - 9.03 1.07 14 4.27E-14

1/128 red 164,866 Mod-AL GMRES 0.005 5.80 7.89 45.2 4.24E-14

1/128 full 689,154 Mod-AL GMRES 0.05 27.93 91.56 68.2 7.09E-14

1/128 red 164,866 HLU GMRES - 38.27 12.78 49 3.37E-10

Table 7: Solve times and divergence error of several methods for the 2D Re=100 driven cavity
problem using SV elements.

H full/red Total dof Method γ setup(s.) iter.(s.) avg iterations ‖∇ · uh‖
1/16 red 3,100 Mod-AL GMRES 0.003 0.02 0.51 96.3 4.50E-14

1/16 full 12,604 Mod-AL GMRES 0.01 0.11 0.80 65.8 3.65E-14

1/16 red 3,100 HLU GMRES - 0.27 0.36 105 4.67E-11

1/32 red 12,388 Mod-AL GMRES 0.003 0.17 1.39 107.7 6.67E-13

1/32 full 51,204 Mod-AL GMRES 0.01 0.74 3.11 63.0 1.06E-14

1/32 red 12,388 HLU GMRES - 1.88 1.55 96 1.09E-10

1/64 red 49,094 Mod-AL GMRES 0.003 1.14 5.51 116.5 4.14E-14

1/64 full 204,550 Mod-AL GMRES 0.01 4.75 12.43 78.2 3.62E-12

1/64 red 49,094 HLU GMRES - 9.63 0.47 6 1.97E-10

1/128 red 164,866 Mod-AL GMRES 0.003 6.22 23.04 134.1 4.44E-14

1/128 full 689,154 Mod-AL GMRES 0.01 24.67 164.07 114.0 5.44E-14

1/128 red 165,866 HLU GMRES - 39.83 1.92 7 3.84E-10

Table 8: Solve times and divergence error of several methods for the 2D Re=1,000 driven cavity
problem using SV elements.

The setup times, iteration times, and average number of iterations needed for convergence are
given in Table 7 for Re=100 and in Table 8 for Re=1,000, for all the methods. On these 2D test
problems, the direct solvers appear the most attractive. Applying backslash to both the condensed
system resulting from (1.3)-(1.4), and to the non-condensed penalty method system, was very
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Figure 7: Shown above are plots of setup and solve times vs dof, for the Re=100 2D test.

efficient. These methods are robust with respect to Reynolds number, require no setup time, and
are simple to use as there are no parameters to optimize. But we also observed that direct solvers
do not seem to benefit from static condensation. This was found using backslash from Matlab,
and was confirmed by numerical tests with the direct solver Pardiso.

For the iterative methods, modified AL preconditioned GMRES shows it is an effective method,
but as expected its effectiveness deteriorates as Re increases. H-LU preconditioned GMRES dis-
plays interesting behavior in that it works much better on the higher Reynolds number problem.
For Re=100, this method does not perform well, but for Re=1,000, this method has the fastest
iteration time of all methods. The drawback of this method is clearly the setup time, but on
problems where a setup can be reused, this method could be very competitive, particularly since
it can solve to such a high degree of of accuracy and thus produce solutions with excellent mass
conservation.

5 Conclusions

We have found efficient solvers for use with Scott-Vogelius finite element discretizations of the
NSE. Both modified AL preconditioned GMRES applied to the statically condensed system, and
the penalty method applied to the full system, are effective solvers for steady NS problems. H-LU
preconditioned GMRES was less efficient on these steady problems, but showed promise in that it
was competitive in iterations needed and iteration time if the setup can be reused (e.g. in a time
dependent problem).
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[30] J. Schöberl. Multigrid methods for a parameter dependent problem in primal variables. Nu-
merische Mathematik, 84:97–119, 1999.

[31] L.R. Scott and M. Vogelius. Conforming finite element methods for incompressible and nearly
incompressible continua. In Large-scale computations in fluid mechanics, Part 2, volume 22-2
of Lectures in Applied Mathematics, pages 221–244. Amer. Math. Soc., 1985.

[32] L.R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence
operator in spaces of piecewise polynomials. Mathematical Modelling and Numerical Analysis,
19(1):111–143, 1985.

[33] R. Temam. Sur lapproximation des solutions des equations de Navier-Stokes. C.R. Acad. Sci.
Paris, Series A, 262:219–221, 1966.

[34] R. Temam. Navier-Stokes Equations : Theory and Numerical Analysis. Elsevier North-
Holland, 1979.

[35] M. Vogelius. An analysis of the p-version of the finite element method for nearly incompressible
materials. Uniformly valid, optimal error estimates. Numer. Math., 41:39–53, 1983.

[36] M. Vogelius. A right-inverse for the divergence operator in spaces of piecewise polynomials.
Application to the p-version of the finite element method. Numer. Math., 41:19–37, 1983.

[37] K.L. Wong and A.J. Baker. A 3d incompressible Navier-Stokes velocity-vorticity weak form
finite element algorithm. International Journal for Numerical Methods in Fluids, 38:99–123,
2002.

[38] S. Zhang. A new family of stable mixed finite elements for the 3d Stokes equations. Math.
Comp., 74(250):543–554, 2005.

[39] S. Zhang. On the P1 Powell–Sabin divergence-free finite element for the Stokes equations.
Journal of Computational Mathematics, 26(3):456–470, 2008.

[40] S. Zhang. Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids. Calcolo,
48(3), 2011.

21


