7,827 research outputs found
Cosmology with a Nonlinear Born-Infeld type Scalar Field
Recent many physicists suggest that the dark energy in the universe might
result from the Born-Infeld(B-I) type scalar field of string theory. The
universe of B-I type scalar field with potential can undergo a phase of
accelerating expansion. The corresponding equation of state parameter lies in
the range of . The equation of state parameter
of B-I type scalar field without potential lies in the range of
. We find that weak energy condition and strong energy
condition are violated for phantom B-I type scalar field. The equation of state
parameter lies in the range of .Comment: 10 pages without figure
Nonlinear electrodynamics and the gravitational redshift of highly magnetised neutron stars
The idea that the nonlinear electromagnetic interaction, i. e., light
propagation in vacuum, can be geometrized was developed by Novello et al.
(2000) and Novello & Salim (2001). Since then a number of physical consequences
for the dynamics of a variety of systems have been explored. In a recent paper
Mosquera Cuesta & Salim (2003) presented the first astrophysical study where
such nonlinear electrodynamics (NLEDs) effects were accounted for in the case
of a highly magnetized neutron star or pulsar. In that paper the NLEDs was
invoked {\it a l\`a} Euler-Heisenberg, which is an infinite series expansion of
which only the first term was used for the analisys. The immediate consequence
of that study was an overall modification of the space-time geometry around the
pulsar, which is ``perceived'', in principle, only by light propagating out of
the star. This translates into an significant change in the surface redshift,
as inferred from absorption (emission) lines observed from a super magnetized
pulsar. The result proves to be even more dramatic for the so-called magnetars,
pulsars endowed with magnetic () fields higher then the Schafroth quantum
electrodynamics critical -field. Here we demonstrate that the same effect
still appears if one calls for the NLEDs in the form of the one rigorously
derived by Born & Infeld (1934) based on the special relativistic limit for the
velocity of approaching of an elementary particle to a pointlike electron [From
the mathematical point of view, the Born & Infeld (1934) NLEDs is described by
an exact Lagrangean, whose dynamics has been successfully studied in a wide set
of physical systems.].Comment: Accepted for publication in Month. Not. Roy. Ast. Soc. latex file,
mn-1.4.sty, 5 pages, 2 figure
Il-palk Malti
L-awtur jitkellem dwar is-sitwazzjoni preżenti ta’ żmienu fir-rigward tal-kitba teatrali Maltija.N/
Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom
We present the first nonperturbative numerical calculations of the
nonrelativistic hydrogen spectrum as predicted by first-quantized
electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also
show rigorous upper and lower bounds on the ground state.
When judged against empirical data our results significantly restrict the
range of viable values of the new electromagnetic constant which is introduced
by the Born-Infeld theory.
We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio
Coupled dynamics of atoms and radiation pressure driven interferometers
We consider the motion of the end mirror of a cavity in whose standing wave
mode pattern atoms are trapped. The atoms and the light field strongly couple
to each other because the atoms form a distributed Bragg mirror with a
reflectivity that can be fairly high. We analyze how the dipole potential in
which the atoms move is modified due to this backaction of the atoms. We show
that the position of the atoms can become bistable. These results are of a more
general nature and can be applied to any situation where atoms are trapped in
an optical lattice inside a cavity and where the backaction of the atoms on the
light field cannot be neglected. We analyze the dynamics of the coupled system
in the adiabatic limit where the light field adjusts to the position of the
atoms and the light field instantaneously and where the atoms move much faster
than the mirror. We calculate the side band spectrum of the light transmitted
through the cavity and show that these spectra can be used to detect the
coupled motion of the atoms and the mirror.Comment: 11 pages; 13 figures; two added references and other minor
correction
Large tunable photonic band gaps in nanostructured doped semiconductors
A plasmonic nanostructure conceived with periodic layers of a doped
semiconductor and passive semiconductor is shown to generate spontaneously
surface plasmon polaritons thanks to its periodic nature. The nanostructure is
demonstrated to behave as an effective material modeled by a simple dielectric
function of ionic-crystal type, and possesses a fully tunable photonic band
gap, with widths exceeding 50%, in the region extending from mid-infra-red to
Tera-Hertz.Comment: 6 pages, 4 figures, publishe
Polaron action for multimode dispersive phonon systems
Path-integral approach to the tight-binding polaron is extended to multiple
optical phonon modes of arbitrary dispersion and polarization. The non-linear
lattice effects are neglected. Only one electron band is considered. The
electron-phonon interaction is of the density-displacement type, but can be of
arbitrary spatial range and shape. Feynman's analytical integration of ion
trajectories is performed by transforming the electron-ion forces to the basis
in which the phonon dynamical matrix is diagonal. The resulting polaron action
is derived for the periodic and shifted boundary conditions in imaginary time.
The former can be used for calculating polaron thermodynamics while the latter
for the polaron mass and spectrum. The developed formalism is the analytical
basis for numerical analysis of such models by path-integral Monte Carlo
methods.Comment: 9 page
The mystery of relationship of mechanics and field in the many-body quantum world
We have revealed three fatal errors incurred from a blind transferring of
quantum field methods into the quantum mechanics. This had tragic consequences
because it produced crippled model Hamiltonians, unfortunately considered
sufficient for a description of solids including superconductors. From there,
of course, Fr\"ohlich derived wrong effective Hamiltonian, from which incorrect
BCS theory arose.
1) Mechanical and field patterns cannot be mixed. Instead of field methods
applied to the mechanical Born-Oppenheimer approximation we have entirely to
avoid it and construct an independent and standalone field pattern. This leads
to a new form of the Bohr's complementarity on the level of composite systems.
2) We have correctly to deal with the center of gravity, which is under the
field pattern "materialized" in the form of new quasipartiles - rotons and
translons. This leads to a new type of relativity of internal and external
degrees of freedom and one-particle way of bypassing degeneracies (gap
formation).
3) The possible symmetry cannot be apriori loaded but has to be aposteriori
obtained as a solution of field equations, formulated in a general form without
translational or any other symmetry. This leads to an utterly revised view of
symmetry breaking in non-adiabatic systems, namely Jahn-Teller effect and
superconductivity. These two phenomena are synonyms and share a unique symmetry
breaking.Comment: 24 pages, 9 sections; remake of abstract, introduction and
conclusion; more physics, less philosoph
Asymptotic Search for Ground States of SU(2) Matrix Theory
We introduce a complete set of gauge-invariant variables and a generalized
Born-Oppenheimer formulation to search for normalizable zero-energy asymptotic
solutions of the Schrodinger equation of SU(2) matrix theory. The asymptotic
method gives only ground state candidates, which must be further tested for
global stability. Our results include a set of such ground state candidates,
including one state which is a singlet under spin(9).Comment: 51 page
Born-Infeld-Einstein theory with matter
The field equations associated with the Born-Infeld-Einstein action including
matter are derived using a Palatini variational principle. Scalar,
electromagnetic, and Dirac fields are considered. It is shown that an action
can be chosen for the scalar field that produces field equations identical to
the usual Einstein field equations minimally coupled to a scalar field. In the
electromagnetic and Dirac cases the field equations reproduce the standard
equations only to lowest order. The spherically symmetric electrovac equations
are studied in detail. It is shown that the resulting Einstein equations
correspond to gravity coupled to a modified Born-Infeld theory. It is also
shown that point charges are not allowed. All particles must have a finite
size. Mass terms for the fields are also considered.Comment: 12 pages, LaTe
- …