4 research outputs found

    Mutation Rate Switch inside Eurasian Mitochondrial Haplogroups: Impact of Selection and Consequences for Dating Settlement in Europe

    Get PDF
    R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America). This lineage played a major role in migration “out of Africa” and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non-synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic) that was subjected to an underestimated selective force. These findings also indicated an under-accumulation of synonymous and non-synonymous mutations localized on coding and non-coding (HVS1) sequences for haplogroup R0, which contains the major haplogroups H and V. These new dates are likely to impact the present colonization model for Europe and confirm the late glacial resettlement scenario

    Microsatellite analysis of Saccharomyces uvarum diversity

    No full text
    Considered as a sister species of Saccharomyces cerevisiae, Saccharomyces uvarum is, to a lesser extent, an interesting species for fundamental and applied research studies. Despite its potential interest as a new gene pool for fermenting agents, the intraspecific molecular genetic diversity of this species is still poorly investigated. In this study, we report the use of 9 microsatellite markers to describe S. uvarum genetic diversity and population structure among 108 isolates from various geographical and substrate origins (wine, cider, natural sources). Our combined microsatellite markers set allowed differentiating 89 genotypes. In contrast to S. cerevisiae genetic diversity, wild and human origin isolates were intertwined. Seventy five % of strains were proven to be homozygotes and estimated heterozygosity suggests a selfing rate above 0.95 for the different population tested here. From this point of view, the S. uvarum life cycle appears to be more closely related to S. paradoxus or S. cerevisiae of natural resources than S. cerevisiae wine isolates. Population structure could not be correlated to distinct geographic or technological origins suggesting lower differentiation that may result from a large exchange between human and natural populations mediated by insects or human activities

    The "pied de cuve" as an alternative way to manage indigenous fermentation: impact on the fermentative process and Saccharomyces cerevisiae diversity

    No full text
    Winemakers are increasingly keen to limit the use of commercial yeasts in order to reduce oenological inputs. The preparation of an indigenous winery-made fermentation starter from grapes called 'pied de cuve' (PdC) is becoming popular, especially in organic farming systems. However, the implementation of the PdC method is still empirical and knowledge is lacking regarding the impact of PdC on S. cerevisiae diversity during alcoholic fermentation. In this study, the impact of PdC on S. cerevisiae genetic diversity and wine composition was evaluated at an industrial scale. Despite very low initial population level of S. cerevisiae before inoculation, the use of PdC was as efficient as Active Dry Yeast in terms of fermentation kinetics and chemical analyses on the resulting wines, except for one modality. At mid-fermentation, the diversity of S. cerevisiae strains was different depending on the PdC used, and was also different from that in the spontaneous fermentation with, in some cases, clonal expansion. Our results provide evidence that the use of PdC could secure the fermentation process more efficiently than spontaneous fermentation
    corecore