65 research outputs found

    Estimation of the Operating Parameters of Miniature Radioisotope Thermoelectric Power Unit Based on the Th-228 Isotope

    Get PDF
    The article considers the construction of a miniature radioisotope power unit based on thermoelectric conversion of thermal energy released during nuclear decay. It is proposed to use thin fluoropolymer films (membranes) as a dielectric heat-insulating material. The results of numerical simulation of a prototype of a miniature radioisotope thermoelectric battery unit based on the thorium-228 isotope in the ANSYS program are presented. The geometry of the system has been optimized. It was established that the temperature of the source can reach about 1033 K, and the efficiency of the considered battery unit can reach 16.8%, which corresponds to modern power supplies of this type

    Experimental studies of thorium ions implantation from pulse laser plasma into thin silicon oxide layers

    Get PDF
    We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma fluxes expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and SiO2/Si(001) sample. Laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with YAG:Nd3+ laser having the pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. Depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of X-ray photoelectron spectroscopy (XPS) and Reflected Electron Energy Loss Spectroscopy (REELS) methods. Analysis of chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on local concentration of thorium atoms, the experimentally established band gaps were located in the range of 6.0 - 9.0 eV. Theoretical studies of optical properties of the SiO2 and ThO2 crystalline systems have been performed by ab initio calculations within hybrid functional. Optical properties of the SiO2/ThO2 composite were interpreted on the basis of Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in "hot" laser plasma at the early stages of expansion has been performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in 229Th isotope with energy of 7.8(0.5) eV

    Formation and Study of Properties of Ta and Mo Nanocluster Films

    Get PDF
    In this article, the results of studies of thin-film samples of nanoclusters of tantalum and molybdenum metals on the surface of silicon dioxide SiO2 /Si (001) at room temperature are presented. The chemical composition and electronic structure of the obtained nanocluster films of Ta and Mo were controlled in situ by X-ray photoelectron spectroscopy (XPS). Susceptibility to oxidation during the exposure to the atmosphere of then nanocluster films, as well as their thermal stability when heated in a vacuum to 600∘C were studied ex situ by the XPS method. The size and shape of the nanoclusters composing the film were estimated ex situ by analyzing images obtained with a scanning electron microscope. The band structure before and after oxidation was studied by measuring the bandgap of the formed Ta and Mo films by the method of electron energy loss characteristic spectroscopy (REELS). Conclusions about thermoelectric properties of the formed nanocluster films of Ta and Mo were made

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl
    • …
    corecore