5,251 research outputs found

    New type of stable particle like states in chiral magnets (Chiral bobbers)

    Get PDF
    We present a new type of a thermodynamically stable magnetic state at interfaces and surfaces of chiral magnets. The state is a soliton solution of micromagnetic equations localized in all three dimensions near a boundary and contains a singularity, but nevertheless has a finite energy. Both features combine to a quasi-particle state for which we expect unusual transport and dynamical properties. It exhibits high thermal stability and thereby can be considered as promising object for fundamental research and practical applications in spintronic devices. We provide arguments that such a state can be found in different B20-type alloys e.g. Mn1x_{1-x}Fex_xGe, Mn1x_{1-x}Fex_xSi, Fe1x_{1-x}Cox_xSi.Comment: accepted in PR

    Voracious vortexes in cataclysmic variables. A multi-epoch tomographic study of HT Cassiopeia

    Full text link
    We present multi-epoch, time-resolved optical spectroscopic observations of the dwarf nova HT Cas, obtained during 1986, 1992, 1995 and 2005 with the aim to study the properties of emission structures in the system. We determined that the accretion disc radius, measured from the double-peaked emission line profiles, is persistently large and lies within the range of 0.45-0.52a, where a is the binary separation. This is close to the tidal truncation radius r_max=0.52a. This result contradicts with previous radius measurements. An extensive set of Doppler maps has revealed a very complex emission structure of the accretion disc. Apart from a ring of disc emission, the tomograms display at least three areas of enhanced emission: the hot spot from the area of interaction between the gas stream and the disc, which is superposed on the elongated spiral structure, and the extended bright region on the leading side of the disc, opposite to the location of the hot spot. The position of the hot spot in all the emission lines is consistent with the trajectory of the gas stream. However, the peaks of emission are located in the range of distances 0.22-0.30a, which are much closer to the white dwarf than the disc edge. This suggests that the outer disc regions have a very low density, allowing the gas stream to flow almost freely before it starts to be seen as an emission source. We have found that the extended emission region in the leading side of the disc is always observed at the very edge of the large disc. Observations of other cataclysmic variables, which show a similar emission structure in their tomograms, confirm this conclusion. We propose that the leading side bright region is caused by irradiation of tidally thickened sectors of the outer disc by the white dwarf and/or hot inner disc regions.Comment: 15 pages, 12 figures. Minor modifications to match version published by Astronomy & Astrophysic

    Neutrino dispersion in external magnetic fields

    Full text link
    We calculate the neutrino self-energy operator Sigma (p) in the presence of a magnetic field B. In particular, we consider the weak-field limit e B << m_\ell^2, where m_\ell is the charged-lepton mass corresponding to the neutrino flavor \nu_\ell, and we consider a "moderate field" m_\ell^2 << e B << m_W^2. Our results differ substantially from the previous literature. For a moderate field, we show that it is crucial to include the contributions from all Landau levels of the intermediate charged lepton, not just the ground-state. For the conditions of the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field contribution to the neutrino dispersion relation is proportional to (e B)^2 and thus comparable to the contribution of the magnetized plasma.Comment: 9 pages, 1 figure, revtex. Version to appear in Phys. Rev. D (presentation improved, reference list revised, numerical error in Eq.(41) corrected, conclusions unchanged

    Propagation of axions in a strongly magnetized medium

    Get PDF
    The polarization operator of an axion in a degenerate gas of electrons occupying the ground-state Landau level in a superstrong magnetic field HH0=me2c3/e=4.411013H\gg H_0=m_e^2c^3/e\hbar =4.41\cdot 10^{13} G is investigated in a model with a tree-level axion-electron coupling. It is shown that a dynamic axion mass, which can fall within the allowed range of values (105eVma102eV)(10^{-5} eV \lesssim m_a\lesssim 10^{-2} eV), is generated under the conditions of strongly magnetized neutron stars. As a result, the dispersion relation for axions is appreciably different from that in a vacuum.Comment: RevTex, no figures, 13 pages, Revised version of the paper published in J. Exp. Theor. Phys. {\bf 88}, 1 (1999

    On the motion of a heavy rigid body in an ideal fluid with circulation

    Full text link
    Chaplygin's equations describing the planar motion of a rigid body in an unbounded volume of an ideal fluid involved in a circular flow around the body are considered. Hamiltonian structures, new integrable cases, and partial solutions are revealed, and their stability is examined. The problems of non-integrability of the equations of motion because of a chaotic behavior of the system are discussed.Comment: 25 pages, 4 figure

    Possibility of the treatment effects on the dynamics of apoptosis processes in tissues of kidneys in acute pyleonephritis and comparative diabetes mellitus in the experiment

    Get PDF
    Programmed cell death under conditions of an infectious-inflammatory process plays a biologically exclusively positive role in the elimination of cells. Acute inflammatory process is a phenomenon capable of excessive concentration of aggressive effectors of inflammation. The aim of the work was to assess the dynamics of ultrastructural changes and early signs of apoptosis in the kidney tissues in experimental modeling of acute pyelonephritis (AP) and concomitant diabetes mellitus (DM) of type II and II when conducting complex drug correction. The work was performed on 300 adult Wistar rats, divided into 6 groups. Fragments of the kidneys were studied and photographed in the electron microscope PEM-100-01. In the kidneys of animals of the group, where traditional medical correction was used after the friendly modeling of pyelonephritis and type I diabetes, it was found that the glomerular ultrastructure was more preserved, but part of the capillaries of the glomerulus remained deformed with a narrowed lumen, there are signs of insufficient restoration of the glomerular capillary network. In the group of animals using the proposed complex drug correction, the renal structure was preserved, the capillaries of the glomerular network with unchanged architectonics. It has been established that the traditional medical correction did not sufficiently contribute to the restoration of damaged kidney tissue ultrastructure. After carrying out the complex medical correction proposed by us after a friendly simulation of an OP of DM type II, the ultrastructure of the kidney tissue in form and structure approached that of control animals, signs of a compensatory-restorative process appeared: most of the podocytes were hyperplastic and hypertrophied. The podocytes of the outer leaflet were in the active phase of activity, as evidenced by an increase in contractile function and, possibly, the release of urine from the cavity into the lumen of the proximal tubules. The structure of the tubules and interstitial tissue is close to the structure of the group of control animals, only in the cytoplasm of the podocytes of the proximal tubules there is an increased content of lysosomes. The ultrastructure of the glomeruli was normalized; the number of hypertrophic podocytes of the inner leaflet with signs of enhanced protein synthesis increased. Changes in the structures of the cortical and medulla are similar except for the state of cytotrabeculae, where their size decreased in the medulla and signs of deformation of the plasmolemma appeared. In experimental modeling of PD and DM of types I and II, pronounced ultrastructural changes in the kidney tissues were established, and manifestations of early apoptosis processes are significantly limited. The use of the complex drug correction proposed by us stimulates the development of the reparative processes of the kidney and moderately activates apoptosis. The addition of multi-vector preparations (Armadin and Nuklex) to the complex of treatment intensifies compensatory-restorative changes in the kidneys and apoptosis, which contributes to the elimination from the renal microstructures of excess damaged cells and aggressive effectors of inflammation
    corecore