169 research outputs found

    The Biology of Cryptosporidium Infection

    Get PDF
    Keynote Lectur

    The Import of Proteins into the Mitochondrion of Toxoplasma gondii

    Get PDF
    Outside of well characterized model eukaryotes, relatively little is known about the translocons that transport proteins across the two membranes that surround the mitochondrion. Apicomplexans are a phylum of intracellular parasites that cause major diseases in humans and animals and are evolutionarily distant from model eukaryotes such as yeast. Apicomplexans harbor a mitochondrion that is essential for parasite survival and is a validated drug target. Here, we demonstrate that the apicomplexan Toxoplasma gondii harbors homologues of proteins from all the major mitochondrial protein translocons present in yeast, suggesting these arose early in eukaryotic evolution. We demonstrate that a T. gondii homologue of Tom22 (TgTom22), a central component of the translocon of the outer mitochondrial membrane (TOM) complex, is essential for parasite survival, mitochondrial protein import, and assembly of the TOM complex. We also identify and characterize a T. gondii homologue of Tom7 (TgTom7) that is important for parasite survival and mitochondrial protein import. Contrary to the role of Tom7 in yeast, TgTom7 is important for TOM complex stability, suggesting the role of this protein has diverged during eukaryotic evolution. Together, our study identifies conserved and modified features of mitochondrial protein import in apicomplexan parasites

    Two essential light chains regulate the MyoA lever arm to promote Toxoplasma gliding motility

    Get PDF
    Key to the virulence of apicomplexan parasites is their ability to move through tissue and to invade and egress from host cells. Apicomplexan motility requires the activity of the glideosome, a multicomponent molecular motor composed of a type XIV myosin, MyoA. Here we identify a novel glideosome component, essential light chain 2 (ELC2), and functionally characterize the two essential light chains (ELC1 and ELC2) of MyoA in Toxoplasma. We show that these proteins are functionally redundant but are important for invasion, egress, and motility. Molecular simulations of the MyoA lever arm identify a role for Ca2+ in promoting intermolecular contacts between the ELCs and the adjacent MLC1 light chain to stabilize this domain. Using point mutations predicted to ablate either the interaction with Ca2+ or the interface between the two light chains, we demonstrate their contribution to the quality, displacement, and speed of gliding Toxoplasma parasites. Our work therefore delineates the importance of the MyoA lever arm and highlights a mechanism by which this domain could be stabilized in order to promote invasion, egress, and gliding motility in apicomplexan parasites

    Building the Perfect Parasite: Cell Division in Apicomplexa

    Get PDF
    Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review

    Selective and potent urea inhibitors of Cryptosporidium parvum inosine 5’-monophosphate dehydrogenase

    Get PDF
    Cryptosporidium parvum and related species are zoonotic intracellular parasites of the intestine. Cryptosporidium is a leading cause of diarrhea in small children around the world. Infection can cause severe pathology in children and immunocompromised patients. This waterborne parasite is resistant to common methods of water treatment and therefore a prominent threat to drinking and recreation water even in countries with strong water safety systems. The drugs currently used to combat these organisms are ineffective. Genomic analysis revealed that the parasite relies solely on inosine-5?-monophosphate dehydrogenase (IMPDH) for the biosynthesis of guanine nucleotides. Herein, we report a selective urea-based inhibitor of C. parvum IMPDH (CpIMPDH) identified by high-throughput screening. We performed a SAR study of these inhibitors with some analogues exhibiting high potency (IC50 1000-fold versus human IMPDH type 2 and good stability in mouse liver microsomes. A subset of inhibitors also displayed potent antiparasitic activity in a Toxoplasma gondii model

    Phthalazinone inhibitors of inosine-5?-monophosphate dehydrogenase from Cryptosporidium parvum

    Get PDF
    Cryptosporidium parvum (Cp) is a potential biowarfare agent and major cause of diarrhea and malnutrition. This protozoan parasite relies on inosine 5?-monophosphate dehydrogenase (IMPDH) for the production of guanine nucleotides. A CpIMPDH-selective N-aryl-3,4-dihydro-3-methyl-4-oxo-1-phthalazineacetamide inhibitor was previously identified in a high throughput screening campaign. Herein we report a structure–activity relationship study for the phthalazinone-based series that resulted in the discovery of benzofuranamide analogs that exhibit low nanomolar inhibition of CpIMPDH. In addition, the antiparasitic activity of select analogs in a Toxoplasma gondii model of C. parvum infection is also presented
    corecore