1,976 research outputs found

    Hierarchical Time-Optimal Planning for Multi-Vehicle Racing

    Full text link
    This paper presents a hierarchical planning algorithm for racing with multiple opponents. The two-stage approach consists of a high-level behavioral planning step and a low-level optimization step. By combining discrete and continuous planning methods, our algorithm encourages global time optimality without being limited by coarse discretization. In the behavioral planning step, the fastest behavior is determined with a low-resolution spatio-temporal visibility graph. Based on the selected behavior, we calculate maneuver envelopes that are subsequently applied as constraints in a time-optimal control problem. The performance of our method is comparable to a parallel approach that selects the fastest trajectory from multiple optimizations with different behavior classes. However, our algorithm can be executed on a single core. This significantly reduces computational requirements, especially when multiple opponents are involved. Therefore, the proposed method is an efficient and practical solution for real-time multi-vehicle racing scenarios.Comment: 6 pages, accepted to be published as part of the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023), Bilbao, Bizkaia, Spain, September 24-28, 202

    H2\mathcal{H}_2 Pseudo-Optimal Reduction of Structured DAEs by Rational Interpolation

    Get PDF
    In this contribution, we extend the concept of H2\mathcal{H}_2 inner product and H2\mathcal{H}_2 pseudo-optimality to dynamical systems modeled by differential-algebraic equations (DAEs). To this end, we derive projected Sylvester equations that characterize the H2\mathcal{H}_2 inner product in terms of the matrices of the DAE realization. Using this result, we extend the H2\mathcal{H}_2 pseudo-optimal rational Krylov algorithm for ordinary differential equations to the DAE case. This algorithm computes the globally optimal reduced-order model for a given subspace of H2\mathcal{H}_2 defined by poles and input residual directions. Necessary and sufficient conditions for H2\mathcal{H}_2 pseudo-optimality are derived using the new formulation of the H2\mathcal{H}_2 inner product in terms of tangential interpolation conditions. Based on these conditions, the cumulative reduction procedure combined with the adaptive rational Krylov algorithm, known as CUREd SPARK, is extended to DAEs. Important properties of this procedure are that it guarantees stability preservation and adaptively selects interpolation frequencies and reduced order. Numerical examples are used to illustrate the theoretical discussion. Even though the results apply in theory to general DAEs, special structures will be exploited for numerically efficient implementations

    Online Time-Optimal Trajectory Planning on Three-Dimensional Race Tracks

    Full text link
    We propose an online planning approach for racing that generates the time-optimal trajectory for the upcoming track section. The resulting trajectory takes the current vehicle state, effects caused by \acl{3D} track geometries, and speed limits dictated by the race rules into account. In each planning step, an optimal control problem is solved, making a quasi-steady-state assumption with a point mass model constrained by gg-diagrams. For its online applicability, we propose an efficient representation of the gg-diagrams and identify negligible terms to reduce the computational effort. We demonstrate that the online planning approach can reproduce the lap times of an offline-generated racing line during single vehicle racing. Moreover, it finds a new time-optimal solution when a deviation from the original racing line is necessary, e.g., during an overtaking maneuver. Motivated by the application in a rule-based race, we also consider the scenario of a speed limit lower than the current vehicle velocity. We introduce an initializable slack variable to generate feasible trajectories despite the constraint violation while reducing the velocity to comply with the rules.Comment: 8 pages, accepted to be published as part of the 34th IEEE Intelligent Vehicles Symposium (IV), Anchorage, Alaska, USA, June 4-7, 202

    Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation

    Get PDF
    In this paper, parametric model order reduction of linear time-invariant systems by matrix interpolation is adapted to large-scale systems in port-Hamiltonian form. A new weighted matrix interpolation of locally reduced models is introduced in order to preserve the port-Hamiltonian structure, which guarantees the passivity and stability of the interpolated system. The performance of the new method is demonstrated by technical example
    • …
    corecore