35 research outputs found

    Giant axonal neuropathy–associated gigaxonin mutations impair intermediate filament protein degradation

    Get PDF
    Author Posting. © American Society for Clinical Investigation, 2013. This article is posted here by permission of American Society for Clinical Investigation for personal use, not for redistribution. The definitive version was published in Journal of Clinical Investigation 123 (2013): 1964–1975, doi:10.1172/JCI66387.Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature detected in neurons and other cell types, including patients’ dermal fibroblasts. The molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using fibroblasts from patients and normal individuals, as well as Gan–/– mice, we demonstrated that gigaxonin was responsible for the degradation of vimentin IFs. Gigaxonin was similarly involved in the degradation of peripherin and neurofilament IF proteins in neurons. Furthermore, proteasome inhibition by MG-132 reversed the clearance of IF proteins in cells overexpressing gigaxonin, demonstrating the involvement of the proteasomal degradation pathway. Together, these findings identify gigaxonin as a major factor in the degradation of cytoskeletal IFs and provide an explanation for IF aggregate accumulation, the subcellular hallmark of this devastating human disease.This work was supported by NIH grants 1P01GM096971 (to R.D. Goldman) and R01 NS062051 (to P. Opal) and a grant from Hannah’s Hope Fund (to R.D. Goldman and P. Opal)

    Withaferin A Alters Intermediate Filament Organization, Cell Shape and Behavior

    Get PDF
    Withaferin A (WFA) is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF) into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects

    Data set on the synthesis and properties of 2′,3′-dideoxyuridine triphosphate conjugated to SiO2 nanoparticles

    No full text
    SiO2 nanoparticles were used as a transport system for cellular delivery of phosphorylated 2′,3′-dideoxyuridine to increase its anticancer potency. This data set is related to the research article entitled “2′,3′-Dideoxyuridine triphosphate conjugated to SiO2 nanoparticles: synthesis and evaluation of antiproliferative activity” (Vasilyeva et al., 2018) [1]. It includes a protocol for the synthesis of 2′,3′-dideoxyuridine-5′-{N-[4-(prop-2-yn-1-yloxy)butyl]-γ-amino}-triphosphate, its identification by NMR, IR and ESI-MS, experimental procedure of covalent attachment to SiO2 nanoparticles with via Cu-catalyzed click-chemistry, experimental data on chemical stability of the conjugate at different pH values and cytotoxicity assessment of antiproliferative effect of the conjugate. Keywords: Cellular delivery, Click-chemistry, Phosphorylated nucleosides, MCF7 cells, Cytotoxicit

    WFA has no effect on the <i>in vitro</i> assembly of human recombinant vimentin.

    No full text
    <p>(A) Recombinant human vimentin (0.2 mg/ml) was assembled for 10 min at 37°C in (i) 50 mM NaCl; (ii) with 0.25% DMSO; (iii) with 50 μM WFA; and (iv) for 30 min with 50 μM WFA at a protein concentration of 0.5 mg/ml. The filaments were fixed with glutaraldehyde and visualized by negative stain electron microscopy. The arrows in (ii) indicate lateral annealing and apparent fusion of individual filaments. (scale bars, 0.2 μm). (B) Viscometric analysis of vimentin assembly in the absence (ctrl) and presence of 50 μM WFA at 37°C in 50 mM NaCl. (C) Centrifugation assay of vimentin assembled in the absence (c) and presence of WFA (w). VIF were assembled for the indicated times (5 to 15 min) in 160 mM NaCl then centrifuged for 5 min at 10 psi in an Airfuge. Samples were separated by SDS-PAGE and stained with Coomassie. The position of vimentin is indicated (55 kDa).</p

    Keratin IF are less sensitive to WFA than VIF.

    No full text
    <p>Human lung cancer cells, A549, were treated for 3 hrs with DMSO [ctrl] (A), 4.0 μM WFA (B), and 6.0 μM WFA (C), followed by staining with vimentin (A′, B′, C′) and pan-cytokeratin antibodies (A′′, B′′, C′′). Scale bars =10 μm.</p

    WFA treatment inhibits cell motility.

    No full text
    <p>(A) The average speed of BJ-5ta fibroblasts was calculated before treatment (white bar), during incubation with 2 μM WFA for 4 hrs (black bars) and after the cells were allowed to recover in fresh medium (gray bars). (B and C) Cells were treated with 2 μM WFA for 3 hrs and then placed into fresh medium followed by fixation and processing for immunofluorescence with vimentin antibodies after 6h rs (B) and 9 hrs (C). Scale bars =10 μm.</p

    WFA also alters the organization of microtubules and microfilaments.

    No full text
    <p>BJ-5ta cell were treated with DMSO (A and C) and 2 μM WFA (B and D) for 3 hrs and stained with vimentin antibodies (A′, B′, C′, D′), tubulin antibodies (A′′ and B′′), and phalloidin to visualize to actin (C′′ and D′′). Scale bars =10 μm.</p

    WFA treatment alters the subcellular organization of VIF.

    No full text
    <p>BJ-5ta cells were treated for 3 hrs (A–C and F) with DMSO alone (A), 0.5 μM WFA (B), 1 μM WFA (C), and 2 μM WFA (F). In addition, cells treated with 2 μM WFA are depicted after 1 hr (D) and 2 hrs (E) which show that the changes in VIF organization take place gradually. Cells were fixed and processed for immunofluorescence with vimentin antibodies. Arrow: a region depicted at higher magnification in the inset, showing non-filamentous vimentin particles and short IF or squiggles. Scale bars =10 μm.</p

    A Trimeric Lipoprotein Assists in Trimeric Autotransporter Biogenesis in Enterobacteria

    No full text
    Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore domain into the bacterial outer membrane follows the rules of β-barrel transmembrane protein biogenesis and is dependent on the essential Bam complex. We have recently described the full fiber structure of SadA, a TAA of unknown function in Salmonella and other enterobacteria. In this work, we describe the structure and function of SadB, a small inner membrane lipoprotein. The sadB gene is located in an operon with sadA; orthologous operons are only found in enterobacteria, whereas other TAAs are not typically associated with lipoproteins. Strikingly, SadB is also a trimer, and its co-expression with SadA has a direct influence on SadA structural integrity. This is the first report of a specific export factor of a TAA, suggesting that at least in some cases TAA autotransport is assisted by additional periplasmic proteins
    corecore