42 research outputs found

    Nucleon-Nucleon Scattering and Large N(c) QCD

    Full text link
    Nucleon-nucleon scattering observables are discussed in the context of large Nc QCD. As is well known, the baryon spectrum in the large Nc limit exhibits contracted SU(2Nf) spin-flavor sym- metry. This symmetry can be used to derive model-independent relations between proton-proton and proton-neutron total cross sections. These relations are valid in the kinematic regime in which the relative momentum of two nucleons is of order of Nc. In this semiclassical regime the nucleon-nucleon scattering can be described in the time-dependent mean field approximation. These model-independent results are compared to experimental data for spin-independent and polarized total nucleon-nucleon cross sections.Comment: 9 pages, 3 figures. Invited talk, Xth Quark Confinement and the Hadron Spectrum, October 201

    Heavy Baryons: A Combined Large N_c and Heavy Quark Expansion for Electroweak Currents

    Full text link
    The combined large N_c and heavy quark limit for baryons containing a single heavy quark is discussed. The combined large N_c and heavy quark expansion of the heavy quark bilinear operators is obtained. In the combined expansion the corrections proportional to m_N/m_Q are summed to all orders. In particular, the combined expansion can be used to determine semileptonic form factors of heavy baryons in the combined limit.Comment: 8 pages. Presented at The Phenomenology of Large N_c QCD, Tempe, Arizona, 9-11 Jan 200

    Classical Strongly Coupled QGP II: Screening and Equation of State

    Get PDF
    We analyze the screening and bulk energy of a classical and strongly interacting plasma of color charges, a model we recently introduced for the description of a quark-gluon plasma at T=(1-3)Tc. The partition function is organized around the Debye-Huckel limit. The linear Debye-Huckel limit is corrected by a virial expansion. For the pressure, the expansion is badly convergent even in the dilute limit. The non-linear Debye-Huckel theory is studied numerically as an alternative for moderately strong plasmas. We use Debye theory of solid to extend the analysis to the crystal phase at very strong coupling. The analytical results for the bulk energy per particle compare well with the numerical results from molecular dynamics simulation for all couplings.Comment: 9 pages, 5 figure

    New near-threshold mesons

    Get PDF
    We show that under a number of rather plausible assumptions QCD spectrum may contain a number of mesons which have not been predicted or observed. Such states will have the quantum numbers of two existing mesons and masses very close to the dissociation threshold into the two mesons. Moreover, at least one of the two mesonic constituents itself must be very close to its dissociation threshold. In particular, one might expect the existence of loosely bound systems of DD and \D; similarly, KK and \ff, Kˉ\bar{K} and \ff, KK and a˚\aa and Kˉ\bar{K} and a˚\aa can be bound. The mechanism for binding in these cases is the S-wave kaon exchange. The nearness of one of the constituents to its decay threshold into a kaon plus a remainder, implies that the range of the kaon exchange force becomes abnormally long--significantly longer than 1/mK1/m_K which greatly aids the binding.Comment: 5 page

    Nucleon-Nucleon Scattering Observables in Large-NcN_c QCD

    Get PDF
    Nucleon-nucleon scattering observables are considered in the context of the large NcN_c limit of QCD for initial states with moderately high momenta (p∼Ncp \sim N_c). The scattering is studied in the framework of the time-dependent mean-field approximation. We focus on the dependence of those observables on the spin and isospin of the initial state which may be computed using time-dependent mean-field theory. We show that, up to corrections, all such observables must be invariant under simultaneous spin and isospin flips ({\it i.e.} rotations through π/2\pi/2 in both spin and isospin) acting on either particle. All observables of this class obtained from spin unpolarized measurements must be isospin independent up to 1/Nc1/N_c corrections. Moreover, it can be shown that the leading correction is of relative order 1/Nc21/N_c^2 rather than 1/Nc1/N_c.Comment: 4 page

    Yields of weakly bound light nuclei as a probe of the statistical hadronization model

    Full text link
    The statistical hadronization model successfully describes the yields of hadrons and light nuclei from central heavy-ion collisions over a wide range of energies. It is a simple and efficient phenomenological framework in which the relative yields for very high energy collisions are essentially determined by a single model parameter—the chemical freeze-out temperature. Recent measurements of yields of hadrons and light nuclei covering over nine orders of magnitudes from the ALICE collaboration at the Large Hadron Collider were described by the model with remarkable accuracy with a chemical freeze-out temperature of 156.5 ± 1.5 MeV. A key physical question is whether (at least to a good approximation) the freeze-out temperature can be understood, literally, as the temperature at which the various species of an equilibrated gas of hadrons (including resonances) and nuclei chemically freeze out, as the model assumes, or whether it successfully parametrizes the yield data for a different reason. This paper analyzes the yields of weakly bound light nuclei—the deuteron and the hypertriton—to probe this issue. Such nuclei are particularly sensitive to assumptions of the model because their binding energies are at a scale far below both typical hadronic scales and the freeze-out temperature. The analysis depends only on outputs of the statistical hadronization model, known hadronic properties and standard assumptions of kinetic theory while making no additional dynamical assumptions about the dynamics of heavy-ion collisions. The analysis indicates that a key assumption underlying the model—that hadrons (and nuclei), just prior to chemical freeze-out temperature, are in thermal equilibrium and are sufficiently dilute as to have particle distributions accurately described statistically by a nearly ideal gas of hadrons and nuclei with masses given by their free space values—appears to be inconsistent with the chemical freeze-out temperature output by the model, at least for these weakly bound nuclei. Implications of this analysis for the interpretation of parameters extracted from the model are discussed

    Model-Independent Predictions for Low Energy Isoscalar Heavy Baryon Observables in the Combined Heavy Quark and Large NcN_c Expansion

    Get PDF
    Model-independent predictions for excitation energies, semileptonic form factors and electromagnetic decay rates of isoscalar heavy baryons and their low energy excited states are discussed in terms of the combined heavy quark and large NcN_c expansion. At leading order, the observables are completely determined in terms of the known excitation energy of the first excited state of Λc\Lambda_c. At next-to-leading order in the combined expansion all heavy baryon observables can be expressed in a model-independent way in terms of two experimentally measurable quantities. We list predictions at leading and next-to-leading order.Comment: 7 pages, LaTe
    corecore