208 research outputs found

    Impact of pterygium on the ocular surface and meibomian glands

    Get PDF
    To analyze how ocular surface parameters correlate to presence of pterygium and investigate the possible impact of pterygia on tear film findings and meibomian glands findings. We investigated objective parameters of the ocular surface such as conjunctival hyperemia, tear film stability and volume, meibomian gland dysfunction, dry eye disease, corneal topography comparing healthy individuals and correlating with the pterygium clinical presentation. A total of 83 patients were included. Corneal astigmatism induction was 2.65 ± 2.52 D (0.4- 11.8). The impact of pterygium on the ocular surface parameters compared to matched controls was seen in: conjunctival hyperemia (control 1.55±0.39/pterygium 2.14±0.69; p = 0.0001), tear meniscus height (control 0.24±0.05 mm/pterygium 0.36±0.14mm; p 0.0002), meiboscore lower eyelid (control 0.29±0.64/pterygium 1.38±0.95; p 0.0001) and meiboscore upper eyelid (control 0.53±0.62/pterygium 0.98±0.75; p = 0.0083). We found a high number of pterygium patients (88%) presented meibomian gland alterations. Interestingly, meibomian gland loss was coincident to the localization of the pterygium in 54% of the upper and 77% lower lids. Pterygium greatly impacts on ocular surface by inducing direct alterations in the pattern of meibomian glands besides corneal irregularities, conjunctival hyperemia and lacrimal film alterations, inducing significant symptoms and potential signs of dysfunction149FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2014/19138-

    Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes

    Get PDF
    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. We developed a systems-level approach that integrates transcriptomic sequencing, proteomics, phenotype, and biochemical studies of relatively unexplored basal fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, untreated plant biomass and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite-repressed and are further regulated by a rich landscape of noncoding regulatory RNAs. Additionally, we identified several promising sequence-divergent enzyme candidates for lignocellulosic bioprocessing

    Cytochemical techniques and energy-filtering transmission electron microscopy applied to the study of parasitic protozoa

    Get PDF
    The study of parasitic protozoa plays a major role in cell biology, biochemistry and molecular biology. Numerous cytochemical techniques have been developed in order to unequivocally identify the nature of subcellular compartments. Enzyme and immuno-cytochemistry allow the detection of, respectively, enzymatic activity products and antigens in particular sites within the cell. Energy-filtering transmission electron microscopy permits the detection of specific elements within such compartments. These approaches are particularly useful for studies employing antimicrobial agents where cellular compartments may be destroyed or remarkably altered and thus hardly identified by standard methods of observation. In this regard cytochemical and spectroscopic techniques provide valuable data allowing the determination of the mechanisms of action of such compounds

    Greenhouse gas emissions from inland waters: A perspective and research agenda for the tropics and subtropics

    Full text link
    peer reviewedStrong consensus indicates that inland waters emit globally significant quantities of greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Tropical inland waters are often considered major contributors to higher greenhouse gas fluxes, yet accurate estimates of aquatic greenhouse gas fluxes are limited for the tropics. We provide a historical perspective on research carried out across low latitudes since the 1980s, synthesize current understanding of the sources and drivers of greenhouse gas emissions, and highlight priority research areas for future tropical inland water greenhouse gas research. We show that much of the focus has been on the humid tropics while the wet-dry, (semi)arid, and mountainous regions remain underrepresented in global datasets. Consistent and reliable greenhouse gas emission estimates will require (1) addressing the observational mismatch with new data from understudied ecoregions, (2) favoring direct and high-resolution carbon dioxide measurements over indirect estimates based on water chemistry parameters, (3) developing approaches that cross boundaries between ecosystem types and scales, and (4) sharing and publishing data more systematically
    corecore