34 research outputs found

    Semi-Supervised Novelty Detection using SVM entire solution path

    Get PDF
    Very often, the only reliable information available to perform change detection is the description of some unchanged regions. Since sometimes these regions do not contain all the relevant information to identify their counterpart (the changes), we consider the use of unlabeled data to perform Semi-Supervised Novelty detection (SSND). SSND can be seen as an unbalanced classification problem solved using the Cost-Sensitive Support Vector Machine (CS-SVM), but this requires a heavy parameter search. We propose here to use entire solution path algorithms for the CS-SVM in order to facilitate and accelerate the parameter selection for SSND. Two algorithms are considered and evaluated. The first one is an extension of the CS-SVM algorithm that returns the entire solution path in a single optimization. This way, the optimization of a separate model for each hyperparameter set is avoided. The second forces the solution to be coherent through the solution path, thus producing classification boundaries that are nested (included in each other). We also present a low density criterion for selecting the optimal classification boundaries, thus avoiding the recourse to cross-validation that usually requires information about the ``change'' class. Experiments are performed on two multitemporal change detection datasets (flood and fire detection). Both algorithms tracing the solution path provide similar performances than the standard CS-SVM while being significantly faster. The low density criterion proposed achieves results that are close to the ones obtained by cross-validation, but without using information about the changes

    Microwave and Quantum Magnetics

    Get PDF
    Contains research objectives and reports on five research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Institutes of Health (Grant 1 P01 CA3 1303-01

    Semi-Supervised and Unsupervised Novelty Detection using Nested Support Vector Machines

    Get PDF
    Very often in change detection only few labels or even none are available. In order to perform change detection in these extreme scenarios, they can be considered as novelty detection problems, semi-supervised (SSND) if some labels are available otherwise unsupervised (UND). SSND can be seen as an unbalanced classification between labeled and unlabeled samples using the Cost-Sensitive Support Vector Machine (CS-SVM). UND assumes novelties in low density regions and can be approached using the One-Class SVM (OC-SVM). We propose here to use nested entire solution path algorithms for the OC-SVM and CS-SVM in order to accelerate the parameter selection and alleviate the dependency to labeled ``changed'' samples. Experiments are performed on two multitemporal change detection datasets (flood and fire detection) and the performance of the two methods proposed compared

    Unsupervised Change Detection via Hierarchical Support Vector Clustering

    Get PDF
    When dealing with change detection problems, information about the nature of the changes is often unavailable. In this paper we propose a solution to perform unsupervised change detection based on nonlinear support vector clustering. We build a series of nested hierarchical support vector clustering descriptions, select the appropriate one using a cluster validity measure and finally merge the clusters into two classes, corresponding to changed and unchanged areas. Experiments on two multispectral datasets confirm the power and appropriateness of the proposed system

    Microwave and Quantum Magnetics

    Get PDF
    Contains research objectives and reports on five research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Institutes of Health (Grant 1 P01 CA3 1303-01

    Robust Phase-Correlation based Registration of Airborne Videos using Motion Estimation

    Get PDF
    This paper presents a robust algorithm for the registration of airborne video sequences with reference images from a different source (airborne or satellite), based on phase-correlation. Phase-correlations using Fourier-Melin Invariant (FMI) descriptors allow to retrieve the rigid transformation parameters in a fast and non-iterative way. The robustness to multi-sources images is improved by an enhanced image representation based on the gradient norm and the extrapolation of registration parameters between frames by motion estimation. A phase-correlation score, indicator of the registration quality, is introduced to regulate between motion estimation only and frame-toreference image registration. Our Robust Phase-Correlation registration algorithm using Motion Estimation (RPCME) is compared with state-of-the-art Mutual Information (MI) algorithm on two different airborne videos. RPCME algorithm registered most of the frames accurately, retrieving much better orientation than MI. Our algorithm shows robustness and good accuracy to multisource images with the advantage of being a direct (non-iterative) method

    Electromagnetic Wave Theory and Remote Sensing

    Get PDF
    Contains reports on eight research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS82-03390)Schlumberger-Doll Research CenterNational Aeronautics and Space Administration (Contract NAG5-141)National Aeronautics and Space Administration (Contract NAS5-26861)National Aeronautics and Space Administration (Contract NAG5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)International Business Machines, Inc

    Microwave and Quantum Magnetics

    Get PDF
    Contains research objectives and reports on seven research projects.U.S. Army Research Office (Contract DAAG29-81-K-0126)National Science Foundation (Grant 8008628-DAR)Joint Services Electronics Program (Contract DAAG29-80-C-0104)National Institutes of Health (Grant 1 PO1 CA31303-01

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains reports on twelve research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 85-04381)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-270)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-725)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)U.S. Army - Research Office Durham (Contract DAAG29-85-K-0079)International Business Machines, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-269)Simulation TechnologiesSchlumberger-Doll Researc
    corecore