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Abstract

When dealing with change detection problems, in-
formation about the nature of the changes is often un-
available. In this paper we propose a solution to per-
form unsupervised change detection based on nonlinear
support vector clustering. We build a series of nested
hierarchical support vector clustering descriptions, se-
lect the appropriate one using a cluster validity mea-
sure and finally merge the clusters into two classes, cor-
responding to changed and unchanged areas. Experi-
ments on two multispectral datasets confirm the power
and appropriateness of the proposed system.

1. Introduction

Change detection in remote sensing has a wide range
of applications from natural hazard damage assess-
ments to urban expansion monitoring. The interest for
unsupervised methods has always been present since
ground truth information is often unavailable or diffi-
cult to retrieve in a timely manner after the event.

A problem that often arises is how to perform change
detection with complex data, while no information
about the structure of the changes is available. One ap-
proach is to transform the data in a way that highlights
changed areas and then use a thresholding, like Change
Vector Analysis (CVA) methods [2]. In [10], the differ-
ence image is represented in the feature space through
the use of kernel functions. Another way to proceed
is to model the support of the data distribution by act-
ing on regularization (i.e. rejection of outliers from the
support of the distribution). In this work, we model the
support of the data using a one class SVM [8] and con-
sider the disconnected regions in the input space to de-
fine clusters [1]. By computing the entire regularization
path with a nested constraint on the boundaries [5], we
retrieve a hierarchical suite of nested clusters.

To find the best clustering in the space of parame-
ters (regularization and kernel bandwidth), we propose
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a new cluster validity measure inspired by the one pro-
posed in [3]. Finally, the clusters composing the se-
lected solution are aggregated into two classes corre-
sponding to changed and unchanged regions. To do
S0, we propose a cluster merging system accounting for
cluster sizes, separation among clusters and closeness
of outliers among clusters.

2 Nested OC-SVM with entire regulariza-
tion path

The One-Class Support Vector Machine (OC-SVM)
was proposed to estimate a level set (usually the sup-
port) of a distribution in a high dimensional space in-
duced by a mapping function ®(x) [8]. The OC-SVM
separates the data with a hyperplane at maximum dis-
tance from the origin. In order to derive the entire reg-
ularization path, the usual C' parameter is replaced by a
regularization parameter \,,, where m is one point on
the regularization path [4]. Given a dataset {x;}¥ |, its
support is found with the following optimization :
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Eq. (1) is solved through its Lagrangian dual for-
mulation [4], leading to the function fy, (x) =
ﬁzia@mK(xi,X), where K (x;,x;) is the kernel
representing the dot product in the high-dimensional
space induced by ®(x). This last expression leads to
the decision function

Irn (x) = sign(fx,, (x) — 1) 2)

which is positive for samples inside the support (in-
liers) and negative for those outside (outliers). Varying
the A\, parameter allows to retrieve the entire OC-SVM
regularization path. In [4], the entire path is derived in
a single optimization step. In the following, we extend
the derivation of the OC-SVM solution along the path
with a nestedness constraint [5].



Nested regularization path. The boundaries gener-
ated along the entire regularization path of the OC-SVM
are not included in each other (or nested). Since level
sets of data are naturally nested, it would makes sense
to get nested boundaries, thus leading to a true hierar-
chy among them. Nesting of the boundaries is achieved
by adding a constraint to the optimization problem. As-
suming M different level of interest on the path A; >
A2 > ... > Ay > 0, the optimization problem leading
to the family of nested OC-SVM on the path is
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with ¢ ,, the Lagrangian multiplier corresponding
to the sample x; at level \,,,. All solutions between two
points m on the path are obtained by linear interpola-
tion. The optimization problem is iteratively solved by
splitting Eq. (3) into subproblems solving for a single
sample x at each iteration (see [5] for more details).

3 Hierarchical Support Vector Clustering

Once the nested OC-SVM solution is retrieved, we
have a series of descriptions (M or more) separating the
changed and unchanged areas from the noise with dif-
ferent degrees of regularization. In the input space the
boundaries obtained from an OC-SVM enclose several
disconnected components. Each of these components is
a cluster core. The decision function gy, (x) defines if a
sample x is an inlier or an outlier but does not indicate
if two inliers are in the same cluster core or not. The
path linking a pair of inlier samples x; and x; from two
different clusters in the input space crosses an outlier
region (gx,, (Xonpain(i,j)) < 0). Following this intuition,
an adjacency matrix A,, at a specific A, can be built
by sampling the path between each pairs of inliers and
checking g, .

0 otherwise
“
with € € [0; 1]. Several methods have been proposed
to accelerate the computation of the matrix A. Graphs
such as Delaunay diagram or Minimum Spanning Tree
can be built on the data and allow to reduce the number
of sample pairs checked [6].
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Figure 1. Distances involved in CVM/CMS.

The cluster memberships are retrieved from the ad-
jacency matrix A, by following the existing links be-
tween inliers samples. For outliers, memberships are
assigned to the closest cluster using Euclidean distance.

Clustering validity measure (CVM). A single so-
lution in the hierarchy should be selected to perform
change detection. The quality of a given clustering can
be assessed using a measure relating the scatter matrix
of samples for each cluster and the scatter matrix be-
tween clusters [9, 10]. However this qualifies the global
clustering with the outliers and not only the quality of
the clustering of the cores. In [3], a cluster validity mea-
sure valid for arbitrary cluster shapes tries to maximize
the compactness and separability of the cluster cores for
a fixed regularization. Consider a distance di, (k) de-
scribing the core size of cluster k as the average of the
maximal distances among each member of the cluster.
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Moreover, we also define a measure of distance be-
tween clusters, diper(k), as the minimal distance to a
member of any other cluster [.
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In both Equations, CY is the set of inliers in the k-th
cluster. Minimizing the sum of dj, over the sum of djye,
works well for a fixed regularization \,, [3], but does
not work when searching for the best kernel parameter
o and regularization J\,, simultaneously. Looking for

the most compact and separated clusters would let them



shrink and result in a clustering solution where almost
all the samples are considered outliers apart from the
cluster centers. In order to take into account the reg-
ularization parameter, both the size of the clusters dj,
and the distance djy; between clusters should be maxi-
mized. Therefore the cluster validity index will be high
for solutions having all samples as inliers apart from the
ones being in the overlap region between two clusters.
In order to penalize solutions including noisy samples in
the cluster core description, we add a ratio R;, between
the maximum and the average of the smallest inner dis-
tances in each cluster, inspired by [3]. This ratio reflects
the difference in density inside a cluster.
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The cluster validity measure (CVM) proposed

rescales the cluster sizes by R;, and becomes small for
solutions including many outliers.
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Cluster merging system (CMS). In change detection
analysis, the final number of classes of interest is two:
unchanged and changed. The solution chosen by the
CVM may show more disconnected clusters belonging
to either class. Therefore the clusters found in the data
should be merged to end up with two ensemble of clus-
ters representing the two classes. The merging is mainly
based on the distance among outliers of different cores.
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where Oy, is the set of outliers assigned to the k-th
cluster. The cluster merging score between two clus-
ters is defined as the ratio between the mean minimum
distance among the outliers of the two clusters and the
mean size of the cluster cores (represented by di,(-)).
This quantity is then multiplied by the distance between
the cores diner(i,7), to favor close clusters to merge.
Fundamentally, this system merges neighboring cores
having most of their outliers in the space between them.
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The distance between clusters djne; 1S evaluated be-
tween two arbitrary clusters ¢ and j, instead of between
¢ and its closest neighbor, as in Eq. (6). Clusters ¢ and
J minimizing this score are merged and the merging is
repeated until only two classes remain.

4 Experiments

Setup. Two sets of multitemporal images are used to
validate the unsupervised change detection approach
proposed. Gloucester floods consists in two SPOT im-
ages acquired before and after a flood in 2000 in UK [7].
Images are 800 1600 pixels with a spatial resolution of
20m and 3 spectral bands (NIR-R-G). Bastrop fires con-
sists in two Landsat 5 TM images acquired before and
after large fires in Texas (USA) in 2011. Images are
785x%929 pixels with 6 spectral bands (from 450 nm to
2350 nm) at a spatial resolution of 30m. Unsupervised
clustering is performed on two different feature sets: the
difference image (DIFF), and the stack of Normalized
Difference Vegetation Indices (NDVI) since the vege-
tation response can dramatically changes after floods
or fires. Comparisons with standard CVA and Ker-
nel K-Means (K = 2) initialized using 500 samples
from CVA are perfomed [10]. The nested support vec-
tor clustering uses the CVA initialization only with the
DIFF features and randomly selected samples with the
NDVI features. The features have been centered (zero-
mean) and normalized by their standard deviation in-
dependently for the Nested Support Vector Clustering
(N-SVC). A RBF kernel is used and its bandwidth o
searched among ten values: o = [0¢/20, ..., 00/2], with
0o the mean standard deviation of the samples. The op-
timal o and A are selected using CVM and used in ten
experiments having different sets of 500 samples.

Results and discussion. The results on the two
datasets and feature sets are presented in Figure 2. The
o selected by the CVM is usually = /10, resulting in
2 to 4 clusters. In all experiments, the N-SVC provided
better results than the Kernel K-Means and CVA, both
in terms of accuracy and stability across experiments.
In the case of Gloucester (DIFF), the best results for N-
SVC were obtained without the CVA initialization. The
CVA initialization biased the initial OC-SVM estima-
tion of the support, as it already rejected the noisy sam-
ples that should be detected as outliers. Let us remind
that N-SVC finds the cluster cores that contain both the
changed and unchanged areas and discriminates them
from the outliers corresponding to noisy samples. It is
only during the merging phase that the difference be-
tween changed and unchanged clusters is done. On the
contrary, the K-K-Means requires CVA to enforce a
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Figure 2. Averaged (standard deviation)
results over 10 different runs.

two-cluster structure, since the algorithm separates the
dataset in two clusters from the beginning and is sen-
sible to the presence of outliers. The N-SVC results in
less false detections (red tones in Figure 2), thus giving
a higher confidence in the detected changes. The nest-

edness of the N-SVC solutions actually helps finding
solutions centered around the true cluster cores.

5. Conclusions

We presented an unsupervised change detection
method based on a nested hierarchical support vector
clustering with an appropriate cluster validity measure
for parameter selection and a cluster merging system to
end up with two main classes (changed and unchanged
samples). Two multitemporal change detection experi-
ments demonstrate the accuracy and stability of the pro-
posed method compared with the kernel K-Means and
standard CVA methods. Our method giving less false
detections benefits from its intrinsic regularization and
nested boundaries.
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