1,879 research outputs found
Crystal to Liquid-Crystal Transition Studied by Raman Scattering
Phase transitions of the nematic liquid crystal p-methoxy-benzylidine, p−n butyl-aniline were studied by recording the low-frequency Raman spectrum. The intensity of the lattice Raman bands undergoes abrupt change at the crystalline-to-nematic phase transition temperature, with an indication of a hysteresis. The band totally disappears at the isotropic (liquid) phase
Prognostic implications of left ventricular global longitudinal strain in heart failure patients with narrow QRS complex treated with cardiac resynchronization therapy: a subanalysis of the randomized EchoCRT trial
Aim:
Left ventricular (LV) global longitudinal strain (GLS) reflects LV systolic function and correlates inversely with the extent of LV myocardial scar and fibrosis. The present subanalysis of the Echocardiography Guided CRT trial investigated the prognostic value of LV GLS in patients with narrow QRS complex.
Methods and results:
Left ventricular (LV) global longitudinal strain (GLS) was measured on the apical 2-, 4- and 3-chamber views using speckle tracking analysis. Measurement of baseline LV GLS was feasible in 755 patients (374 with cardiac resynchronization therapy (CRT)-ON and 381 with CRT-OFF). The median value of LV GLS in the overall population was 7.9%, interquartile range 6.2–10.1%. After a mean follow-up period of 19.4 months, 95 patients in the CRT-OFF group and 111 in the CRT-ON group reached the combined primary endpoint of all-cause mortality and heart failure hospitalization. Each 1% absolute unit decrease in LV GLS was independently associated with 11% increase in the risk to reach the primary endpoint (Hazard ratio 1.11; 95% confidence interval 95% 1.04–1.17, P < 0.001), after adjusting for ischaemic cardiomyopathy and randomization treatment among other clinically relevant variables. When categorizing patients according to quartiles of LV GLS, the primary endpoint occurred more frequently in patients in the lowest quartile (<6.2%) treated with CRT-ON vs. CRT-OFF (45.6% vs. 28.7%, P = 0.009) whereas, no differences were observed in patients with LV GLS ≥6.2% treated with CRT-OFF vs. CRT-ON (23.7% vs. 24.5%, respectively; P = 0.62).
Conclusion:
Low LV GLS is associated with poor outcome in heart failure patients with QRS width <130 ms, independent of randomization to CRT or not. Importantly, in the group of patients with the lowest LV GLS quartile, CRT may have a detrimental effect on clinical outcomes
Stability of strangelet at finite temperature
Using the quark mass density- and temperature dependent model, we have
studied the thermodynamical properties and the stability of strangelet at
finite temperature. The temperature, charge and strangeness dependences on the
stability of strangelet are investigated. We find that the stable strangelets
are only occured in the high strangeness and high negative charge region.Comment: 12 pages, 14 figure
Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)
Besides the dedicated search for strangelets NA52 measures light
(anti)particle and (anti)nuclei production over a wide range of rapidity.
Compared to previous runs the statistics has been increased in the 1998 run by
more than one order of magnitude for negatively charged objects at different
spectrometer rigidities. Together with previous data taking at a rigidity of
-20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3
without centrality requirements. We measured nuclei and antinuclei
(p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter
range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei
are mainly produced via the coalescence mechanism. However the centrality
dependence of the antibaryon to baryon ratios show that antibaryons are
diminished due to annihilation and breakup reactions in the hadron dense
environment. The volume of the particle source extracted from coalescence
models agrees with results from pion interferometry for an expanding source.
The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide
with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference
on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept.
25-29, 200
Dynamics of Resonances in Strongly Interacting Systems
The effects of the propagation of particles which have a finite life-time and
an according broad distribution in their mass spectrum are discussed in the
context of a transport descriptions. In the first part some example cases of
mesonic modes in nuclear matter at finite densities and temperatures are
presented. These equilibrium calculations illustrate the dynamical range of
spectral distributions to be adequately covered by non-equilibrium description
of the dynamics of two nuclei colliding at high energies. The second part
addresses the problem of transport descriptions which properly account for the
damping width of the particles. A systematic and general gradient approximation
is presented in the form of diagrammatic rules which permit to derive a
self-consistent transport scheme from the Kadanoff--Baym equation. The scheme
is conserving and thermodynamically consistent provided the self-energies are
obtained within the Phi-derivable two-particle irreducible (2PI) method of
Baym. The merits, the limitations and partial cures of the limitations of this
transport scheme are discussed in detail.Comment: To appear in the proceedings of the International Conference
"Progress in Nonequilibrium Green's Functions III", Kiel, 22.-26. August 200
Cold Strangelets Formation with Finite Size Effects in High Energy Heavy-Ion Collisions
We have studied the phase diagram and evolution of a strangelet in
equilibrium with a finite hadronic gas. Significant finite size modifications
of the phase diagram are found and their parameter dependences are studied.
With the inclusion of finite size effects we have also been able to obtain the
detailed properties of the cold strangelet emerging in the final stage of the
isentropic expansion of a finite strange fireball in high energy heavy-ion
collisions.Comment: 19 pages(RevTex), 11 Postscript figures; To appear in Phys. Rev.
Detectability of Strange Matter in Heavy Ion Experiments
We discuss the properties of two distinct forms of hypothetical strange
matter, small lumps of strange quark matter (strangelets) and of hyperon matter
(metastable exotic multihypernuclear objects: MEMOs), with special emphasis on
their relevance for present and future heavy ion experiments. The masses of
small strangelets up to A = 40 are calculated using the MIT bag model with
shell mode filling for various bag parameters. The strangelets are checked for
possible strong and weak hadronic decays, also taking into account multiple
hadron decays. It is found that strangelets which are stable against strong
decay are most likely highly negative charged, contrary to previous findings.
Strangelets can be stable against weak hadronic decay but their masses and
charges are still rather high. This has serious impact on the present high
sensitivity searches in heavy ion experiments at the AGS and CERN facilities.
On the other hand, highly charged MEMOs are predicted on the basis of an
extended relativistic mean-field model. Those objects could be detected in
future experiments searching for short-lived, rare composites. It is
demonstrated that future experiments can be sensitive to a much wider variety
of strangelets.Comment: 26 pages, 5 figures, uses RevTeX and epsf.st
Review of Speculative "Disaster Scenarios" at RHIC
We discuss speculative disaster scenarios inspired by hypothetical new
fundamental processes that might occur in high energy relativistic heavy ion
collisions. We estimate the parameters relevant to black hole production; we
find that they are absurdly small. We show that other accelerator and
(especially) cosmic ray environments have already provided far more auspicious
opportunities for transition to a new vacuum state, so that existing
observations provide stringent bounds. We discuss in most detail the
possibility of producing a dangerous strangelet. We argue that four separate
requirements are necessary for this to occur: existence of large stable
strangelets, metastability of intermediate size strangelets, negative charge
for strangelets along the stability line, and production of intermediate size
strangelets in the heavy ion environment. We discuss both theoretical and
experimental reasons why each of these appears unlikely; in particular, we know
of no plausible suggestion for why the third or especially the fourth might be
true. Given minimal physical assumptions the continued existence of the Moon,
in the form we know it, despite billions of years of cosmic ray exposure,
provides powerful empirical evidence against the possibility of dangerous
strangelet production.Comment: 28 pages, REVTeX; minor revisions for publication (Reviews of Modern
Physics, ca. Oct. 2000); email to [email protected]
Multibaryons as Symmetric Multiskyrmions
We study non-adiabatic corrections to multibaryon systems within the bound
state approach to the SU(3) Skyrme model. We use approximate ansatze for the
static background fields based on rational maps which have the same symmetries
of the exact solutions. To determine the explicit form of the collective
Hamiltonians and wave functions we only make use of these symmetries. Thus, the
expressions obtained are also valid in the exact case. On the other hand, the
inertia parameters and hyperfine splitting constants we calculate do depend on
the detailed form of the ansatze and are, therefore, approximate. Using these
values we compute the low lying spectra of multibaryons with B <= 9 and
strangeness 0, -1 and -B. Finally, we show that the non-adiabatic corrections
do not affect the stability of the tetralambda and heptalambda found in a
previous work.Comment: 17 pages, RevTeX, no figure
- …