593 research outputs found

    Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    Get PDF
    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures

    The role of lipoprotein lipase and apoprotein E in the recognition of chylomicrons and chylomicron remnants by cultured isolated mouse hepatocytes

    Get PDF
    Lipoprotein lipase (LPL) has been proposed to play a role in the uptake of chylomicron remnants by hepatocytes by mediating the binding of these lipoproteins to cell-surface glycosaminoglycans and to the low-density-lipoprotein receptor-related protein (LRP). This proposal is based on studies that examined the binding of chylomicrons to HepG2 cells, fibroblasts and Chinese hamster ovary cells in culture, in the presence of large amounts of LPL [Beisiegel (1995) Curr. Opin. Lipidol. 6, 117-122]. We have investigated whether LPL attached to the surface of chylomicrons enhances the binding and uptake of these lipoproteins to isolated hepatocytes maintained in culture. Bovine milk LPL was bound to mouse chylomicrons, double-labelled in vivo with [3H]retinol (in retinyl esters) and with [14C]palmitic acid (in triacylglycerols), collected from the mesenteric lymph of normal mice and from mice lacking the apoprotein E (apo E) gene. Normal chylomicrons (containing apo E) and apo E-free chylomicrons, with or without bound LPL, were incubated with cultured hepatocytes isolated from mice lacking the apo E gene. At 0 degree C LPL did not enhance the binding of the normal or apo E-free chylomicrons by the hepatocytes. When incubations were performed at 37 degrees C the triacylglycerols of normal and apo E-free chylomicrons were hydrolysed by LPL and there was a significant uptake of [14C]fatty acids and [3H]retinol by the hepatocytes. The addition of heparin or lactoferrin, a known inhibitor of hepatic uptake of chylomicron remnants, to the incubation medium inhibited the uptake of [3H]retinol, present in the lipoprotein core, but not the uptake of the [14C]fatty acids. We conclude that: (1) LPL attached to chylomicrons in amounts sufficient to effectively hydrolyse their core triacylglycerols does not enhance the binding of these lipoproteins to the surface of isolated hepatocytes; (2) the recognition and uptake of chylomicrons by hepatocytes requires that these lipoproteins be first hydrolysed by LPL; and (3) the uptake of lipolysed chylomicrons (remnants) by hepatocytes does not require the mediation of apo E

    The role of lipoprotein lipase and apoprotein E in the recognition of chylomicrons and chylomicron remnants by cultured isolated mouse hepatocytes

    Get PDF
    Lipoprotein lipase (LPL) has been proposed to play a role in the uptake of chylomicron remnants by hepatocytes by mediating the binding of these lipoproteins to cell-surface glycosaminoglycans and to the low-density-lipoprotein receptor-related protein (LRP). This proposal is based on studies that examined the binding of chylomicrons to HepG2 cells, fibroblasts and Chinese hamster ovary cells in culture, in the presence of large amounts of LPL [Beisiegel (1995) Curr. Opin. Lipidol. 6, 117-122]. We have investigated whether LPL attached to the surface of chylomicrons enhances the binding and uptake of these lipoproteins to isolated hepatocytes maintained in culture. Bovine milk LPL was bound to mouse chylomicrons, double-labelled in vivo with [3H]retinol (in retinyl esters) and with [14C]palmitic acid (in triacylglycerols), collected from the mesenteric lymph of normal mice and from mice lacking the apoprotein E (apo E) gene. Normal chylomicrons (containing apo E) and apo E-free chylomicrons, with or without bound LPL, were incubated with cultured hepatocytes isolated from mice lacking the apo E gene. At 0 degree C LPL did not enhance the binding of the normal or apo E-free chylomicrons by the hepatocytes. When incubations were performed at 37 degrees C the triacylglycerols of normal and apo E-free chylomicrons were hydrolysed by LPL and there was a significant uptake of [14C]fatty acids and [3H]retinol by the hepatocytes. The addition of heparin or lactoferrin, a known inhibitor of hepatic uptake of chylomicron remnants, to the incubation medium inhibited the uptake of [3H]retinol, present in the lipoprotein core, but not the uptake of the [14C]fatty acids. We conclude that: (1) LPL attached to chylomicrons in amounts sufficient to effectively hydrolyse their core triacylglycerols does not enhance the binding of these lipoproteins to the surface of isolated hepatocytes; (2) the recognition and uptake of chylomicrons by hepatocytes requires that these lipoproteins be first hydrolysed by LPL; and (3) the uptake of lipolysed chylomicrons (remnants) by hepatocytes does not require the mediation of apo E

    Coactivators in PPAR-Regulated Gene Expression

    Get PDF
    Peroxisome proliferator-activated receptor (PPAR)α, β (also known as δ), and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism

    Oriented Scanning Is the Leading Mechanism Underlying 5′ Splice Site Selection in Mammals

    Get PDF
    Splice site selection is a key element of pre-mRNA splicing. Although it is known to involve specific recognition of short consensus sequences by the splicing machinery, the mechanisms by which 5′ splice sites are accurately identified remain controversial and incompletely resolved. The human F7 gene contains in its seventh intron (IVS7) a 37-bp VNTR minisatellite whose first element spans the exon7–IVS7 boundary. As a consequence, the IVS7 authentic donor splice site is followed by several cryptic splice sites identical in sequence, referred to as 5′ pseudo-sites, which normally remain silent. This region, therefore, provides a remarkable model to decipher the mechanism underlying 5′ splice site selection in mammals. We previously suggested a model for splice site selection that, in the presence of consecutive splice consensus sequences, would stimulate exclusively the selection of the most upstream 5′ splice site, rather than repressing the 3′ following pseudo-sites. In the present study, we provide experimental support to this hypothesis by using a mutational approach involving a panel of 50 mutant and wild-type F7 constructs expressed in various cell types. We demonstrate that the F7 IVS7 5′ pseudo-sites are functional, but do not compete with the authentic donor splice site. Moreover, we show that the selection of the 5′ splice site follows a scanning-type mechanism, precluding competition with other functional 5′ pseudo-sites available on immediate sequence context downstream of the activated one. In addition, 5′ pseudo-sites with an increased complementarity to U1snRNA up to 91% do not compete with the identified scanning mechanism. Altogether, these findings, which unveil a cell type–independent 5′−3′-oriented scanning process for accurate recognition of the authentic 5′ splice site, reconciliate apparently contradictory observations by establishing a hierarchy of competitiveness among the determinants involved in 5′ splice site selection
    corecore