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Chapter 6

Episodic grammar

In this and the following chapters I will introduce
episodic-HPN, an extension of HPN with an episodic
memory. The model is based on an original hypothesis
about the interaction of semantic and episodic mem-
ory in language processing. It shows how language
processing can be understood in terms of memory re-
trieval, or as a priming effect, and language acquisi-
tion in terms of memory consolidation. I will point
out that the perceived dichotomy between rule-based
versus exemplar-based language modeling can be in-
terpreted in a neuro-biological perspective in terms
of the interaction between a semantic memory sys-
tem that encodes linguistic knowledge in the form of
abstract rules, and an episodic memory that stores
concrete linguistic events. Before I present the full
episodic-HPN model in Chapter 8, I will consider in
this chapter the concept of parsing with an episodic
memory for the supervised and symbolic case, using
nonterminal labels learned from a treebank. I will im-
plement a probabilistic, episodic grammar and evalu-
ate its performance as a reranker on a realistic corpus
of natural language, the Wall Street Journal.

6.1 Episodic memory

The previous chapter (section 5.6.3) identified several limitations of the current
version of HPN. For instance, since all information available to the model are the
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122 Chapter 6. Episodic grammar

metric distances between network units, the model cannot represent (sentence)
context, or do contextual conditioning. As a consequence, although HPN is suited
for emulating (probabilistic) context free grammars (as was shown in section 5.2),
it is ill-equipped for realistic language processing, where decisions depend on
structural and lexical sentence context. The HPN network encodes, through
the substitution space, context free relations between abstract (encapsulated)
syntactic units, and as such qualifies as a semantic memory for the syntactic
domain.

As defined in section 2.7, semantic memory refers to a person’s general world
knowledge, including language, in the form of abstract concepts that are system-
atically related to each other; Episodic memory, on the other hand, is a person’s
memory of personally experienced events or episodes, embedded in a temporal,
spatial and emotional context (see section 2.7 for an extensive discussion of the
human memory system).

The ideas developed in this chapter start from the observation that the scien-
tific debate on the relation between semantic and episodic memory parallels, in
a striking manner, an ongoing controversy about modeling language: one side in
the debate is focusing on evidence for abstract, rule-based grammars [e.g. Marcus,
2001], and the other side emphasizes the item-based nature of grammar with a
role (particularly in acquisition) for concrete sentence fragments larger than rules
[e.g., Tomasello, 2000b]. While a rule-based grammar can be conceived of as an
instance of semantic memory, as it encodes abstract, relational linguistic knowl-
edge, the item-based approach suggests a role for episodic memory in sentence
processing, since it reuses concrete (rather than abstract) linguistic experiences
that have been memorized.

Assuming that the language domain mirrors cognitive processes from other
domains, one expects that it would be illuminating to incorporate the notion of a
semantic-episodic memory interaction within a computational model of language
processing. In this chapter I will formulate a theory of episodic-semantic mem-
ory interaction, and based on this an ‘episodic’ model of syntax, called ‘episodic
grammar’, that links language processing to memory processes, or more precisely
to episodic memory retrieval. While the current chapter as a first step only in-
troduces a symbolic episodic grammar – leaving out the topology – in Chapter 8
I will enrich the ‘semantic’ HPN model of the previous chapter with an episodic
memory for sentences, thus lifting its limitation for dealing with sentence con-
text. The episodic grammar model should take into account the following basic
empirical facts about episodic memory

• Physical traces. All episodic experiences that occur during the lifespan
of an individual, and that can be consciously remembered, leave physical
memory traces in the brain. This includes memories of sentences that have
been processed by the language system.
• Chronological order preservation. Most people are able to recover the ap-
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proximate chronological order of their episodic memories. Thus, the relative
order of the episodes must be somehow encoded in the representations of
their traces.
• Content addressability. Priming effects demonstrate that static memories

(for instance the memory of a smell) trigger episodic memories that are
strongly associated with them. It is commonly believed that retrieval of
episodic memories is contingent on cues from semantic memory. To account
for content addressability an episodic memory must support local access
from semantic memory units to their associated episodes (as implemented
for instance in Hopfield networks [e.g., Hopfield, 1982]).
• Sequentiality. In the Memory Prediction Framework it is emphasized that

the function of memory is to make temporal inferences (i.e., predict). Ac-
cording to [e.g., Eichenbaum, 2004] episodes are construed as temporal se-
quences of (time-less) semantic elements, bound together within a certain
context (see Figure 2.7 in section 2.7.1).
• Separatibility and identifiability. The memory system must be able to iden-

tify and disambiguate an episode, even if it overlaps with another episode
that is partly composed of the same semantic units. It is thought that to
this end special ‘context neurons’ exist, that fire only for the duration of a
specific episode [e.g., Levy, 1996].

There exist several connectionist models of episodic memory in the literature [e.g.,
Hopfield, 1982, Miikkulainen, 1999, McQueen, 2005, McClelland et al., 1995]. In
section 8.5.1 I will discuss an instantiation of the latter, [O’Reilly and Norman,
2002] in the context of memory consolidation. Yet, as far as I know, to date
there exists no theory of episodic-semantic memory interaction that is applicable
to syntactic processing.

6.1.1 Proposal for the representation of episodes as dis-
tributed traces in semantic units

I propose that the episodic memory of a sentence is distributed across semantic
memory units (i.e., the HPN nodes), and consists of physical traces, contained
inside the nodes, that keep a record of the nodes participation in the derivation
of the processed sentence. (In general, I claim that the episodic memory of a
complex event consists of physical traces, distributed across the primitive seman-
tic units that took part in structurally encoding the particular event.) This is
illustrated schematically in Figure 6.1, which shows the episodic memory traces
in the HPN network after hearing the sentences girl who dances likes tango (light
colored traces) and boy likes mango (dark colored traces). Each of the traces of a
processed sentence points to its succeeding and preceding node in the derivation,
which allows HPN to reconstruct the original derivation from the traces. Concep-
tually, all that is required to upgrade from semantic HPN to episodic HPN is to
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turn the existing local short term memories in the slots, where pointers to bound
nodes are temporarily stored, into long term memories after a sentence has been
successfully processed. (Note that this proposal implies that the semantic units
involved in encoding an episode, like those involved in an HPN derivation, are
dynamically bound: see section 8.4.2 for a neural perspective on episodic memory
encoding in HPN.)

Figure 6.1: Episodic traces of a sentence (drawn as colored dots) are stored in
local memories of visited nodes in the HPN network. In HPN the nodes and slots
are situated in a topology.

6.2 Episodic grammar — model outline

For a more formal introduction to the topic of episodic grammar, let us leave for
the moment the framework of HPN, and first deal with a symbolic implementation
of episodic grammar. I will come back to the HPN formalism in Chapter 8, when
I will work out the details of episodic-HPN. Also in the symbolic approach it is
useful to take the point of view of a grammar as a network of interconnected
treelets, that can combine with each other through substitution. I will assume
that context-free rules from traditional grammars correspond one-to-one to such
treelets, which thus play the role of the compressor nodes in HPN. I will also
assume that the treelets possess a register (an internal memory, corresponding to
a slot in HPN) that keeps track of the correct order of application of the syntactic
operations.

As in HPN, in the episodic grammar a derivation is a sequence of visits to
treelets, whereby treelets are bound through serial binding. The standard ap-
proach assumes a top-down, left-to-right derivation: each next rule is combined
through left-most substitution with the partial tree derived so-far. I will also
consider left-corner derivations in the next section.

In order to remember the correct order of derivation (which can vary depend-
ing on the chosen derivation strategy) the episodic traces encode the sentence
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Figure 6.2: Episodic traces of two sentences (drawn as colored ovals) are stored
in local memories of visited treelets (indicated by triangles and rectangles) in
the symbolic episodic network. Note that by virtue of their ordinal number the
traces implement pointers to successor treelets in a derivation (drawn for the first
sentence alone).

number (s) as well as the position (k) of the treelet within the derivation. In Fig-
ure 6.2 the traces (for a top-down derivation) are identified by these two numbers,
indicated as 〈s, k〉 inside the treelets. Note that after hearing many sentences a
single treelet will store traces for all sentences that have visited it, which are dis-
tinguished by their sentence number, and possibly multiple visits from the same
sentence.

The episodic sentence memories stored in the traces can also be recruited for
the purpose of processing novel, unseen sentences. The idea is that when the
derivation of a novel sentence arrives at a treelet, the traces encountered within
the treelet trigger memories of stored exemplars. These receive an activation
value whose strength depends on how close the stored derivation is to the pending
derivation (see section 6.2.3). Every next step in the derivation is determined by
competition between traces of different exemplars, each having its own preference
for a successor treelet, and its own activation strength. In this view sentence
processing (or parsing) can be interpreted as being subject to a priming effect: the
traces prime or reactivate derivations of previously processed sentences (through
content addressability), and restore the memory of previous parser decisions.

The above proposal satisfies the requirements of an episodic memory, as men-
tioned in the previous section, and it conforms to the view that episodes consist of
pointers that bind semantic memory units into temporal sequences [e.g., Shastri,
2002]; content addressability is satisfied because activation of a single trace in a
semantic unit triggers an entire episode. Parts of episodes are thus reconstructed
on-the-fly at test time, rather than searched for. Further, chronological order
preservation, as well as sequentiality and separatibility are trivially satisfied by
the way that traces are encoded. Given a probabilistic interpretation, the episodic
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grammar offers an explicit computational instantiation of the reinstatement hy-
pothesis of episodic retrieval.

6.2.1 The left corner episodic grammar

Figure 6.3: Episodic memory traces in the left corner episodic grammar after
deriving the sentence girl who dances likes tango.

One of the advantages of the episodic approach is that it allows for compar-
ing different derivation strategies within a single framework, and find out what
the effect is of a different order of application of operations on treelets. An in-
teresting parsing strategy from a cognitive point of view is left corner parsing
[Rosenkrantz and Lewis II, 1970], since it proceeds incrementally from left to
right, and combines top-down and bottom-up processing.

As explained in section 3.1.3, in left corner parsing the grammar rules are
introduced bottom-up by a project operation to the left corner of the rule. The
‘left corner’ is the left-most symbol on the right hand side of a phrase structure
rule; in the episodic framework it refers to the bottom-left nonterminal of a treelet.
As long as there are no completed (i.e., fully processed) treelets, the next word in
the sentence is introduced by a shift operation; otherwise the derivation can either
project to a new treelet, or attach to a not yet completed treelet that has been
previously introduced. Figure 6.3 shows an episodic left corner derivation for the
sentence girl who dances likes tango. The shift, project and attach operations are
indicated in the figure by their abbreviations.

Whereas most standard probabilistic left corner parsers compute the parse
probability of a given sentence [e.g., Moore, 2004, Manning and Carpenter, 1997],
hence assume a deterministic shift move, here we are interested in the joint prob-
ability of the parse and the sentence. It will be assumed that the shift move
requires an additional step in the derivation, connecting an ‘incomplete’ treelet
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(after attach or project) with a word, as illustrated in Figure 6.3. Thus, the
derivation is connected, and proceeds according to a fixed linear order, which is
a prerequisite for the episodic approach. To this end special treelets have been
introduced that execute the shift to the next word (e.g., RC∗ → dances).1 These
treelets employ special starred nonterminals (e.g., RC∗): one or more stars indi-
cate the register position in the treelet from where the shift operation originates
(e.g., RC →WHO ∗ VI ). The derivation starts with a shift operation from the
special START∗ symbol to the first word of the sentence.

One important difference with the top-down derivation strategy is that upon
every attach operation treelets are reengaged in the derivation. It is therefore
important to distinguish treelets by their register state, which keeps track of
the operations (project, attach) performed on the treelet. Episodic traces are
thus associated with and stored in a treelet in a specific register state, which is
indicated in Figure 6.3 by adding a dot before or after the trace.2

6.2.2 Training the episodic grammar

To evaluate the concept of episodic grammar quantitatively a probabilistic ver-
sion is implemented that is trained on a corpus of realistic language. Probabilistic
grammars assign probabilities to different parses of a sentence and select the most
probable one, hence can be evaluated on their ability to disambiguate between
parses. As explained in section 3.1.5, one estimates the parameters of the proba-
bilistic episodic grammar from a treebank, which is a corpus consisting of natural
language sentences manually annotated with phrase structure trees.

After deciding on a derivation strategy (i.e., top-down or left-corner), the
training proceeds by distributing a trace e = 〈s, k〉 in every visited treelet tk of
derivation x = 〈t0, . . . , tk, . . . , tn〉 of sentence number s in the treebank. Specifi-
cally, given a treebank, then

1. Create an empty treelet for every unique context free production extracted
from the treebank. In case of a left corner derivation one must also create
separate treelets for distinct visits to the same production (i.e., after an
attach), that is one must distinguish register positions of a treelet. Further,
in case of a left corner derivation, create special shift treelets (as described
in section 6.2.1) corresponding to the shift moves (to terminals) of the left
corner parser.

2. For every treebank parse determine the sequential order of (register-indexed)
treelets according to the chosen derivation strategy.

1This strategy is based on the probabilistic Left Corner Shifting Grammar (LCSG), which
will be developed in the next chapter. The LCSG includes shift probabilities, hence defines a
language model, which allows for the calculation of sentence probabilities.

2In general, there can be as many register positions as there are children in the treelet. In
the top-down episodic grammar the register is always in position 0, hence it is not indicated in
Figure 6.2.



128 Chapter 6. Episodic grammar

3. For every step k in the derivation of sentence number s, leave a (register-
indexed) trace in the visited treelet, encoded as 〈s, k〉.

At every derivation step the probability of moving to the next treelet in the
derivation can be computed based on the traces in the current treelet and their
activations, according to Equation 6.2.

6.2.3 Statistical parsing with the episodic grammar

After training the grammar one can use the model to assign probabilities to can-
didate parses of a new sentence. Given an ongoing derivation d of a sentence, that
has arrived at a certain treelet tq, r, in register position r, one defines the proba-
bility of continuing the derivation to any other treelet tq′, s in register position s
based on the activation values of the episodic traces of earlier derivations stored
in treelet tq, r. The activation A(exi

) of the trace exi
(in tq, r) of earlier derivation

x is a function of the common history CH (exi
, d) of derivation x (of which exi

is the ith trace) with the ongoing derivation d. The CH is simply given by the
number of derivation steps (i.e., treelets) that the stored derivation x and the
pending derivation d have shared the same path before arriving at tq, r. Episodic
traces that share a long common history should contribute relatively much to the
parser decision. A convenient choice for the activation of a trace is

A(exi
) = λ

CH (exi ,d)
0 (6.1)

where λ0 is a parameter of the model. Depending on the chosen derivation strat-
egy (e.g., top-down or left corner), the traces have different CH’s, hence receive
different activations.

All information to calculate these activations is stored inside treelet tq, r; com-
putations are thus local, and compatible with the constraints imposed by a neu-
rally plausible, or connectionist design.

Figure 6.4: Probability of continuing a derivation from treelet tq to treelet tq′ is
determined by competition between traces. The width of the arrows indicates
the trace activation A.

The probability of moving to tq′ in the next step of the derivation is simply the
sum of activations of traces that point to tq′ , divided by the sum of all activations
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(see Figure 6.4).3 Let E
tq′
tq be the set of traces in treelet tq that point to treelet

tq′ , and Etq the full set of traces in treelet tq. Then, the probability of moving
the derivation to treelet tq′ is

Pepisodic(tq′|tq) =

∑
ei∈E

tq′
tq

A(ei)∑
ej∈Etq

A(ej)
(6.2)

The (episodic) probability of a complete derivation D is given by:

Pepisodic(D = 〈t0, t1, . . . , tn〉) =
n∏
i=1

P (ti|ti−1) (6.3)

This probability can be computed dynamically, while simultaneously updating
the common histories (and activations) of all traces at every step of the derivation.
Let tq and tq′ be two successive treelets in the pending derivation d, and let
e′ = 〈s, j〉 be a trace stored in tq′ . Then its CH is updated according to

CH (e′, dq′) = CH (e, dq) + 1 (6.4)

if there exists a trace e = 〈s, j − 1〉 in tq (i.e., a predecessor of e′). Otherwise,
CH (e′, dq′) = 0.

A similar probability model can be derived for the episodic HPN model. There
is a complementary role for the semantic memory component of HPN (i.e., the
metric), namely to provide prior probabilities for transitions between treelets
where there is no evidence from previous episodes (i.e., smoothing). One then
has

P (tq′, s|tq, r) = (1− λ) · Pepisodic(tq′, s|tq, r) + λ · Psemantic(tq′, s|tq, r) (6.5)

For now we focus on the symbolic episodic grammar (with labels), and a full
treatment of the episodic-HPN model will be given in Chapter 8.

6.2.4 Smoothing and binarization

In order to obtain a non-zero parse probability for all sentences of the test corpus
standard smoothing techniques were performed. Unknown words in the test set
were replaced by word classes, which were created from rare words (occurring
less than 5 times) in the training set. The word class labels were based on the
word’s morphology, capitalization, and whether the word occurred at sentence
initial position. See [Petrov et al., 2006] for details about the algorithm.

In order to deal with missing productions in the test parse trees, as a first step
the rules of the treebank parses were binarized, using horizontal Markovization as

3For clarity of notation I have left out the register positions r and s from this point on.
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VP

〈VP . . .PP〉
H
HH

�
��

〈VP . . .NP〉
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〈VP〉

VBZ
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PP

Figure 6.5: Markovization of the tree VP → VBZ NP PP (adapted from [Klein
and Manning, 2003])

proposed by [Klein and Manning, 2003]. For any rule with two or more daughters,
the right daughters are split off recursively, while the remaining left daughters are
replaced with an internal node, as shown in Figure 6.5. In the Figure, the angled
brackets (e.g., < VP . . .PP >) indicate internal labels, and the dots summarize
all internal labels that expand to VP as their leftmost daughter and PP as their
rightmost daughter.

Subsequently, three levels of back-off smoothing (i.e., deleted interpolation)
were used, where every level conditioned on less context (see Equation 6.6). The
first level back-off probabilities, P1, backs off to a non-episodic version of the
chosen derivation strategy. In the top-down episodic grammar these are the
PCFG rule probabilities, which condition the application of a treelet on a single,
expanding nonterminal label; In the case of a left corner episodic grammar the first
level backs off to a standard probabilistic left corner model. This conditions the
application of a treelet on the left corner and goal category, following [Manning
and Carpenter, 1997].

The second level, P2, backs off the conditioning context of any compound
nonterminal (originating from the Markovization step) by reducing the condi-
tioning context of a label to its left element alone (e.g. X in < X . . . Y >).
Thus, given a unary or binary PCFG rule with a compound root label, e.g.,
< X . . . Z >→< X . . . Y > Z, the backed off probabilities P (< X . . . Y > Z|X)
generalize over all such rules with arbitrary Z that have X as the left element
of their root nonterminal. Similarly, in the left corner grammar the second level
backs off a compound left corner label to its left-most element.

The third level, P3, assigns uniform probabilities to all possible unary and
binary context free productions (that can be constructed from the nonterminals
of the grammar), irrespective of context. The three levels are parametrized by
back-off parameters λ1, λ2 and λ3, yielding

P (tq′|tq) = (1−λ1) ·Pepisodic+λ1 · ((1−λ2) ·P1 +λ2 · ((1−λ3) ·P2 +λ3 ·P3)) (6.6)
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In this equation the λ’s are fixed, and all back-off probabilities are estimated
from the training corpus.

6.2.5 Evaluation and reranking

Figure 6.6: The reranking process.

As has become the standard, the episodic grammar was trained on sections
2-21 from the Penn Wall Street Journal corpus (WSJ) [Marcus et al., 1993] and
evaluated on section 22 of WSJ. For the test section labeled precision and recall
of the most probable parses according to the model were measured using the
PARSEVAL metric (see section 3.1.6).

While in Chapter 7 I will develop a specialized left corner chart parser for the
episodic grammar, at this stage it is interesting to study the properties of the
episodic probability model, and a straight forward way to do this is to use the
model as a reranker. This means that one takes a list of n best parses for every
sentence produced by a third party parser (in this case Charniak’s maximum
entropy parser [Charniak, 2000]), and reranks the list by assigning a probability
to each parse under the model of interest [Sangati et al., 2009]. One can then use
the standardized PARSEVAL metric to evaluate labeled precision (LP), labeled
recall (LR) and their harmonic mean (F-score) of the parses that receive the
highest probability under the reranker [Manning and Schütze, 2000, p. 432].
Figure 6.6 illustrates the reranking process step by step.

Reranking does have some limitations as an assessment of the model’s perfor-
mance, since the n best parses list produced by the third party parser has upper
and lower bound precision and recall scores. For comparison the scores are given
of a random reranker, that selects a parse from the list by chance. Confidence in
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the results of the reranker increases with the size n of the list of the best third
party parses (NBest list) (e.g., see Figure 6.8).

6.3 Experiments and results

The precision and recall results of the episodic top-down reranker, applied to
the top 5 Charniak parses, are given in the first three columns of Table 6.1 as
a function of the maximum common history that is taken into account by the
episodic grammar (the column max his). CH’s larger than the maximum history
are capped in equation 6.1. The bottom 2 rows give the Charniak scores and the
scores for a random reranker; As is common practice, only sentences of 40 words
or less were included. I have experimented with different parameterizations of
λ0, . . . , λ3 on the development set . Optimal results were obtained for λ0=4, and
λ1, . . . , λ3 in the range between 0.1-0.3, with only little variance. In Table 6.1 and

top down reranker left corner reranker
max his LR LP F LR LP F
0 87, 11 90, 01 88, 54 87, 93 90, 31 89, 10
1 89, 53 90, 27 89, 90 89, 35 90, 22 89, 79
2 89, 64 90, 23 89, 94 89, 49 90, 30 89, 89
3 90, 15 90, 45 90, 30 89, 64 90, 43 90, 04
4 90, 15 90, 39 90, 27 89, 79 90, 53 90, 16
5 90,27 90,45 90,36 89, 91 90, 63 90, 27
6 90, 23 90, 41 90, 32 89, 96 90, 58 90, 27
7 90, 19 90, 37 90, 28 90, 13 90, 76 90, 44
8 90, 09 90, 21 90, 15 90,32 90,90 90,61
9 90, 14 90, 27 90, 20 90, 29 90, 84 90, 56
10 90, 03 90, 16 90, 09 90, 23 90, 79 90, 51
11 89, 98 90, 14 90, 06 90, 10 90, 74 90, 42
12 89, 91 90, 11 90, 01 90, 07 90, 67 90, 37
Ch 90, 23 90, 15 90, 19 90, 23 90, 15 90, 19
Ran 88, 15 87, 89 88, 02 88, 17 87, 84 88, 00

Table 6.1: Precision and recall scores of the episodic top-down reranker (columns
1-3) and left corner reranker (columns 4-6) as a function of the maximum history
considered (nBest=5; λ0=4; λ1=λ2=λ3=0.2).

Figure 6.7 one can see a clear effect of conditioning history, peaking at history
5 for the top-down reranker, and at history 8 for the left corner reranker (best
scores are indicated in boldface). For histories 3-7 the episodic top-down reranker
surpasses the Charniak F-scores by a slight margin, and overall does much better
than the PCFG reranker (corresponding to history 0) and the random reranker.

As can be seen from Table 6.1, the LCE grammar performs better across
the board than the TDE grammar, and this is mainly due to improved labeled
precision scores. It also does better than the probabilistic left corner model of
[Manning and Carpenter, 1997], which corresponds to the top row in the Table.
Note that for the LCE reranker the peak is reached at history 8, and the F-scores
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Figure 6.7: F-scores compared between the top-down and the left corner episodic
reranker as a function of conditioning history.

stay high until history 14; this could be an indication that the order of condition-
ing in a LCE derivation better approximates human sentence processing than in
a TDE derivation. It is remarkable that the LCE grammar robustly improves on
the Charniak parser, because i) unlike the latter it does not implement head anno-
tation or other non-trivial preprocessing steps, ii) it makes several non-standard
assumptions about the derivation process, such as a left-corner sequential order
and the inclusion of special shift treelets in the derivation for transitions from
incomplete productions to words.

Figure 6.8: F-scores of the left corner episodic reranker applied to the top 5, top
10 and top 20 Charniak parses.

To assess the robustness of the reranking method I have also applied the LCE
reranker to the top 10 and the top 20 lists of Charniak parses. In the latter case
the random reranker baseline is significantly lower than for the top 5 reranker
(F-score = 86.2 resp. 88.0). Therefore it is meaningful that the top 20 reranker
still performs almost as good as Charniak (F-score=90.15 for history 8), and the
top 10 reranker does even better (F-score=90.34 for history 9). In Figure 6.8
it can further be seen that although the differences in performance between the
top 5, top 10 and top 20 reranker are large for low histories, they converge for
histories of 6-10, when the episodic approach starts to make a difference. On the
other hand, the TDE reranker breaks down when applied to the top 20 Charniak
parses, peaking at an F-score of 89.66 for history 6.
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6.3.1 Discontiguous episodes

An interesting way to extend the episodic grammar is by including discontiguous
episodes. Often one can reuse a memorized sentence fragment, even if it does not
exactly match the sentence that is currently being processed, but differs from it by
a single word or clause. I implemented a variation of update rule for the common
history (CH) in order to include episodes with ‘gaps’. In Equation 6.4, whenever
an episode is interrupted (i.e., its CH is set to 0) it is pushed together with its
current activation on an external stack of discontiguous episodes (a separate stack
is used for every exemplar). If at a later stage in the derivation a trace of the same
exemplar is found, which has no predecessor, then one can pop up an interrupted
episode from the top of the stack of that exemplar, and copy (a fixed fraction f
of) its activation to the new trace.

Figure 6.9: F-scores of the LCE reranker with and without counting discontigui-
ties (d=0.95; f=0.6)

.

Best results were obtained when the activation of unused discontiguous episodes
decays by some percentage d at every step of the derivation. With d = 0.95 and
f = 0.6 the addition of discontiguous episodes gives a minor improvement over
the non-discontiguous case, as can be seen from Figure 6.9. The highest F-score is
90.68, which is reached for history 10. The effect of the inclusion of discontiguous
fragments seems to be that longer histories play a more prominent role.

If one looks at the individual sentences from the test set (WSJ section 22) for
which the F-scores increased most by including discontiguous fragments, one finds
that those are indeed sentences that employ frequent discontiguous expressions.
For instance, within the top 5 of these sentences one contains the discontiguous
fragment rose to ... from ..., which occurs more than 100 times in the training
corpus.

6.3.2 Shortest derivation reranker

Assuming that language users understand and produce novel sentences by reusing
fragments of stored episodes, then intuitively they will try to do so by retrieving
not only the most frequent, but also as few as possible fragments from memory,
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since this demands the least cognitive effort. This amounts to a preference for
the shortest derivation of a novel sentence.

Such a preference can be implemented in the episodic grammar framework by
greedily selecting fragments from stored exemplars that share the largest common
history with the derivation of a novel sentence (not including fragments from
exemplars that are identical to the novel sentence). When the shortest derivation
principle is used together with the LCE reranker to select those derivations of
the Nbest list that use the fewest episodes (followed by selection of the derivation
with the highest likelihood in case of a draw) then an F-score of 90.44 is obtained
(for history 9). Thus, the shortest derivation LCE reranker performs worse than
the maximum likelihood LCE reranker, but still better than the Charniak parser.

In Data Oriented Parsing the principle of the shortest derivation has been
successfully explored as an alternative to a probabilistic parsing strategy [Bod,
2000]. The multi-word fragments employed in the shortest derivations (or in the
most probable derivations) are assumed to have some cognitive reality as the
primitive building blocks of speech. In the DOP framework however a top-down
derivation is always assumed, whereas in the episodic framework one can also find
fragments of a left corner derivation. Figure 6.10 shows some examples of fre-
quent fragments that occur in the shortest derivations of the Tuebingen Corpus of
English Spontaneous Speech (www.sfs.uni-tuebingen.de/en/tuebaes.shtml), when
the parse trees are derived with a left corner episodic grammar.

S
XXXXXX
���
������

NP MD VP@att8
PPPP

����
VB@pr2

do@pr1

S**@sh0

NP@att7

PR-DM@pr6

DT@pr5

that@pr4

VP*@sh3

VP
PPPP

����
VBZ@pr2

sounds@pr1

START*@sh0

AP@att6

JJ@pr5

good@pr4

VP*@sh3

Figure 6.10: Examples of frequent fragments used in the shortest derivations
of the Tuebingen corpus. The letters after the @-symbol indicate the applied
operation (sh(ift), att(ach), pr(oject)), and the order of application.
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6.4 Relation to other work

As was discussed in section 3.1.8, current research in statistical NLP and parsing
increasingly focuses on ways to weaken the context independence assumptions
of probabilistic context free grammars (PCFGs). Context free grammars fail to
take advantage of two relatively independent sources of contextual information
for disambiguating between parses: context!structural and lexical, which captures
the dependency on previous words in the sentence, and structural context, which
captures the dependency on the relative position in a parse tree. In section 3.1.8
I have discussed some of the solutions that have been investigated, such as head
lexicalization and parent annotation; all of these involve transferring contextual
information to the labels of the trees as to preserve the context free backbone of
the grammar.

In the episodic grammar both lexical context and structural context are in-
tegrated in the conditioning history without any need for preprocessing of the
labels. For instance, in the LCE grammar all words to the left of the currently
processed word weigh in the parser move decision. As such, the LCE grammar
should be considered as a good candidate for language processing.

Parsing with episodic grammars is in some respects comparable to the tradi-
tion of history based parsing, which exploits the idea that the parser moves are
conditioned on n previous parser decisions in the derivation history. A weakness
of the latter approach is however that it leads to very large grammars and data
sparsity, since all conditioning events are saved explicitly in equivalence classes
[e.g., Black et al., 1993, Collins, 1999, p.57]. In the episodic grammar parser deci-
sions are conditioned on arbitrary long histories, at no cost to the grammar size,
because conditioning context is implicit in the representation, and is constructed
explicitly only during on-line processing of a novel sentence. Since every exemplar
is stored only once in the network, the space complexity of the episodic grammar
is linear in the number of exemplars.

Another difference with history-based parsers is that in the latter the associ-
ation between the conditioning event and the sentence from which it originates
is lost, whereas in the episodic grammar the identity of an exemplar that has
contributed to a derivation step is preserved. In section 6.3.1 it was shown that
this feature can be used for including discontiguous episodes.

It is also interesting to compare the episodic grammar with Data Oriented
Parsing (DOP) [e.g., Bod, 1998] (see section 3.1.9). In DOP the primitive units of
the grammar are not CF rules, but subtrees of arbitrary size, which are extracted
from the parses of a treebank. In a certain sense DOP and episodic parsing are
complementary: whereas in DOP the substitution of an arbitrary large subtree
is conditioned on a single nonterminal, in the episodic parser the application of
a local tree is conditioned on an arbitrary large episode. However, the shortest
derivation variant of the episodic reranker effectively combines both conditioning
on large histories and substitution of stored units larger than a single treelet.
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Further, both approaches allow for non-local dependencies to be captured in
primitive, discontiguous fragments of the grammar, but in the episodic framework
this is less straight forward to implement than in DOP. An advantage of episodic
grammar over DOP is that in the former the stored parse tree can be broken down
into subtrees according to various generative processes (top-down, left corner, or
any other decomposition) whereas in DOP always a top-down generative process is
assumed. This opens the possibility to utilize the episodic grammar as a language
model in speech recognition, for which a left corner strategy is more suitable than
a top-down strategy.

As was mentioned before, in the episodic grammar it is not necessary to
store every possible tree fragment explicitly. This is an advantage over DOP,
which suffers from computational inefficiency due to very large grammars. The
fact that stored episodes are automatically reconstructed from traces during the
derivation of a novel sentence obviates a time-expensive search through an ex-
ternal memory (i.e., a treebank of fragments), and makes the episodic grammar
content-addressable.

Table 6.2 shows how the present results compare to state-of-the-art parsers.
Note that the latter are evaluated on section 23 of WSJ, while all the results of
this work are on section 22. Note also that for the present results a reranker is
used, that is parasitic on the Charniak (1999) parser.

Various parser strategies (on WSJ sec 23)
Parsing model F (≤ 40) F (all)
Charniak (1999) (max. entropy) 90.1 89.6
Petrov and Klein (2007) (refinement-based) 90.6 90.1
Bansal and Klein (2010) (fragment-based) 88.7 88.1
Sangati & Zuidema (2011) (DOP) 89.7 89.1
Cohn et al. (2009) (Bayesian) - 84.0
Charniak and Johnson (2005) (reranker, n = 50) - 90.1

This paper (on WSJ sec 22)
TDE reranker (n = 5) 90.4 -
LCE reranker (n = 5) 90.6 90.1
LCE + disctg (n = 5) 90.7 -

Table 6.2: Comparison of the episodic reranker to state-of-the-art parsers, for
sentences of length up to 40, or all sentences.

6.5 Chapter conclusion

In this chapter I described a cognitively inspired implementation for contextual
conditioning in statistical parsing, using episodic memory. It was shown that for
the task of supervised parsing the episodic grammar is a viable alternative for
standard, not cognitively motivated probabilistic grammars. At the same time
the episodic grammar offers a neural perspective on human syntax, that unifies
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the contrasting views that syntax is either encoded as a set of abstract rules, or
as stored exemplars of (fragments of) sentences.

It will be even more interesting to see whether the episodic framework can be
successful as an approach to the unsupervised induction of (neurally plausible)
grammars from unannotated sentences. Since in episodic parsing all computations
are done locally, the framework is in principle compatible with the constraints
imposed by a connectionist design. This will be explored in Chapter 8, where I
will evaluate an episodic version of HPN.

The current work should not only be seen as an exercise in computational
linguistics, but also as a theoretical contribution to episodic memory research.
As such, it is an instance of how cognitively inspired linguistic research can open
a window on the study of memory processes in the brain. I proposed an original
hypothesis for the representation of episodic memory, which expresses that an
episodic memory is distributed in the form of traces, supplied with a time stamp,
inside local stores of the semantic memory units that are involved in processing
it. According to a free interpretation of this proposal one could imagine episodic
memory as a life-long thread spun through semantic memory.

In contemporary theoretical neuroscience most models of episodic memory
assume dedicated ‘binding neurons’, whose sole job it is to bind semantic ‘content’
nodes into episodic representations [e.g., MacKay, 2007, Shastri, 2002, O’Reilly
and Rudy, 2001, O’Reilly and Norman, 2002]. Yet, this is not a very feasible
solution for the representation of episodic memories, for every day of a person’s
life many thousands of new episodic memories are formed. If episodic memories
were stored in binding units, this would require the neurogenesis of a massive
number of neurons and the establishment of even more new connections. As
will be explained in section 8.4.2, in the current proposal successive traces of an
episode are assumed to be dynamically bound, hence binding neurons are not
necessary. In this sense the current proposal, although simple, contributes to the
episodic memory debate, because it shows a way out of the curse of connectivity.

In their essence, the ideas developed in this chapter are consistent with con-
temporary research in neuroscience, which emphasizes the construal of episodes
in the hippocampus as contextually bound sequences of semantic memories [e.g.,
Eichenbaum, 2004] (see section 8.4 for a discussion of the episodic-HPN model
in the neuro-biological context). The hippocampal model of Levy [1996] shows
that during episodic sequence learning special ‘context neurons’ are formed that
uniquely identify (part of) an episode. These may function as a neural correlate
of the counter that was implemented in the traces. The episodic grammar model
represents a first attempt to validate this theory of episodic memory within the
language domain.




