24 research outputs found

    In vivo knock-down of multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs and by artificial miRNAs

    Get PDF
    ABC transporters export clinically-relevant drugs and their over-expression causes multidrug resistance. In order to knock-down ABC transporters, ABCC1 and ABCC2, 13 shRNAs were developed. Four shRNA candidates were tested in vivo using self-complementary adeno-associated virus serotype 8. A strong, specific knock-down of Abbc2 was observed in mice liver, but at the cost of toxicity caused by oversaturation of the RNAi machinery due to high shRNA expression. Subsequent generation of artificial miRNAs showed better efficacy profile. These results demonstrate the feasibility of knocking down Abbc2 via AAV-delivered shRNAs to the liver, and encourage the use of miRNA in further therapeutics development

    Safe and Efficient Silencing with a Pol II, but not a Pol lII, Promoter Expressing an Artificial miRNA Targeting Human Huntingtin

    Get PDF
    Huntington\u27s disease is a devastating, incurable neurodegenerative disease affecting up to 12 per 100,000 patients worldwide. The disease is caused by a mutation in the Huntingtin (Htt) gene. There is interest in reducing mutant Huntingtin by targeting it at the mRNA level, but the maximum tolerable dose and long-term effects of such a treatment are unknown. Using a self-complementary AAV9 vector, we delivered a mir-155-based artificial miRNA under the control of the chicken β-actin or human U6 promoter. In mouse brain, the artificial miRNA reduced the human huntingtin mRNA by 50%. The U6, but not the CβA promoter, produced the artificial miRNA at supraphysiologic levels. Embedding the antisense strand in a U6-mir-30 scaffold reduced expression of the antisense strand but increased the sense strand. In mice treated with scAAV9-U6-mir-155-HTT or scAAV9-CβA-mir-155-HTT, activated microglia were present around the injection site 1 month post-injection. Six months post-injection, mice treated with scAAV9-CβA-mir-155-HTT were indistinguishable from controls. Those that received scAAV9-U6-mir-155-HTT showed behavioral abnormalities and striatal damage. In conclusion, miRNA backbone and promoter can be used together to modulate expression levels and strand selection of artificial miRNAs, and in brain, the CβA promoter can provide an effective and safe dose of a human huntingtin miRNA

    Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1(G93A) Mice and Nonhuman Primates

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3-5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1-3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1(G93A) protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and recombinant adeno-associated virus (rAAV) 9. We report here a silencing method based on an artificial microRNA termed miR-SOD1 systemically delivered using adeno-associated virus rAAVrh10, a serotype with a demonstrated safety profile in CNS clinical trials. Silencing of SOD1 in adult SOD1(G93A) transgenic mice with this construct profoundly delayed both disease onset and death in the SOD1(G93A) mice, and significantly preserved muscle strength and motor and respiratory functions. We also document that intrathecal delivery of the same rAAVrh10-miR-SOD1 in nonhuman primates significantly and safely silences SOD1 in lower motor neurons. This study supports the view that rAAVrh10-miR-SOD1 merits further development for the treatment of SOD1-linked ALS in humans

    Survival Advantage of Both Human Hepatocyte Xenografts and Genome-Edited Hepatocytes for Treatment of α-1 Antitrypsin Deficiency.

    Get PDF
    Hepatocytes represent an important target for gene therapy and editing of single-gene disorders. In α-1 antitrypsin (AAT) deficiency, one missense mutation results in impaired secretion of AAT. In most patients, lung damage occurs due to a lack of AAT-mediated protection of lung elastin from neutrophil elastase. In some patients, accumulation of misfolded PiZ mutant AAT protein triggers hepatocyte injury, leading to inflammation and cirrhosis. We hypothesized that correcting the Z mutant defect in hepatocytes would confer a selective advantage for repopulation of hepatocytes within an intact liver. A human PiZ allele was crossed onto an immune-deficient (NSG) strain to create a recipient strain (NSG-PiZ) for human hepatocyte xenotransplantation. Results indicate that NSG-PiZ recipients support heightened engraftment of normal human primary hepatocytes as compared with NSG recipients. This model can therefore be used to test hepatocyte cell therapies for AATD, but more broadly it serves as a simple, highly reproducible liver xenograft model. Finally, a promoterless adeno-associated virus (AAV) vector, expressing a wild-type AAT and a synthetic miRNA to silence the endogenous allele, was integrated into the albumin locus. This gene-editing approach leads to a selective advantage of edited hepatocytes, by silencing the mutant protein and augmenting normal AAT production, and improvement of the liver pathology. Mol Ther 2017 Nov 1; 25(11):2477-2489

    Survival Advantage of Both Human Hepatocyte Xenografts and Genome-Edited Hepatocytes for Treatment of alpha-1 Antitrypsin Deficiency

    Get PDF
    Hepatocytes represent an important target for gene therapy and editing of single-gene disorders. In alpha-1 antitrypsin (AAT) deficiency, one missense mutation results in impaired secretion of AAT. In most patients, lung damage occurs due to a lack of AAT-mediated protection of lung elastin from neutrophil elastase. In some patients, accumulation of misfolded PiZ mutant AAT protein triggers hepatocyte injury, leading to inflammation and cirrhosis. We hypothesized that correcting the Z mutant defect in hepatocytes would confer a selective advantage for repopulation of hepatocytes within an intact liver. A human PiZ allele was crossed onto an immune-deficient (NSG) strain to create a recipient strain (NSG-PiZ) for human hepatocyte xenotransplantation. Results indicate that NSG-PiZ recipients support heightened engraftment of normal human primary hepatocytes as compared with NSG recipients. This model can therefore be used to test hepatocyte cell therapies for AATD, but more broadly it serves as a simple, highly reproducible liver xenograft model. Finally, a promoterless adeno-associated virus (AAV) vector, expressing a wild-type AAT and a synthetic miRNA to silence the endogenous allele, was integrated into the albumin locus. This gene-editing approach leads to a selective advantage of edited hepatocytes, by silencing the mutant protein and augmenting normal AAT production, and improvement of the liver pathology

    Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema

    Get PDF
    Chronic obstructive pulmonary disease affects 10% of the worldwide population, and the leading genetic cause is alpha-1 antitrypsin (AAT) deficiency. Due to the complexity of the murine locus, which includes up to six Serpina1 paralogs, no genetic animal model of the disease has been successfully generated until now. Here we create a quintuple Serpina1a-e knockout using CRISPR/Cas9-mediated genome editing. The phenotype recapitulates the human disease phenotype, i.e., absence of hepatic and circulating AAT translates functionally to a reduced capacity to inhibit neutrophil elastase. With age, Serpina1 null mice develop emphysema spontaneously, which can be induced in younger mice by a lipopolysaccharide challenge. This mouse models not only AAT deficiency but also emphysema and is a relevant genetic model and not one based on developmental impairment of alveolarization or elastase administration. We anticipate that this unique model will be highly relevant not only to the preclinical development of therapeutics for AAT deficiency, but also to emphysema and smoking research

    5 Year Expression and Neutrophil Defect Repair after Gene Therapy in Alpha-1 Antitrypsin Deficiency

    Get PDF
    Alpha-1 antitrypsin deficiency is a monogenic disorder resulting in emphysema due principally to the unopposed effects of neutrophil elastase. We previously reported achieving plasma wild-type alpha-1 antitrypsin concentrations at 2.5%-3.8% of the purported therapeutic level at 1 year after a single intramuscular administration of recombinant adeno-associated virus serotype 1 alpha-1 antitrypsin vector in alpha-1 antitrypsin deficient patients. We analyzed blood and muscle for alpha-1 antitrypsin expression and immune cell response. We also assayed previously reported markers of neutrophil function known to be altered in alpha-1 antitrypsin deficient patients. Here, we report sustained expression at 2.0%-2.5% of the target level from years 1-5 in these same patients without any additional recombinant adeno-associated virus serotype-1 alpha-1 antitrypsin vector administration. In addition, we observed partial correction of disease-associated neutrophil defects, including neutrophil elastase inhibition, markers of degranulation, and membrane-bound anti-neutrophil antibodies. There was also evidence of an active T regulatory cell response (similar to the 1 year data) and an exhausted cytotoxic T cell response to adeno-associated virus serotype-1 capsid. These findings suggest that muscle-based alpha-1 antitrypsin gene replacement is tolerogenic and that stable levels of M-AAT may exert beneficial neutrophil effects at lower concentrations than previously anticipated

    Design, Cloning, and In Vitro Screening of Artificial miRNAs to Silence Alpha-1 Antitrypsin

    No full text
    This protocol describes the design, cloning, and in vitro screening of artificial microRNAs (miRNAs) to silence alpha-1 antitrypsin (AAT). This method would be of interest to silence AAT in a variety of in vitro or in vivo models, and prevalidated sequences against human AAT are provided. This simple 5-day protocol may more generally be used to design artificial miRNAs against any transcript

    Quantification of Z-AAT by a Z-Specific Sandwich ELISA

    No full text
    This protocol describes an enzyme-linked immunosorbent assay (ELISA) to specifically detect Z-alpha-1 antitrypsin (AAT), the most common protein variant associated with alpha-1 antitrypsin deficiency. This sandwich ELISA relies on an anti-Z-AAT specific capture antibody and a HRP-conjugated anti-AAT detection antibody. This method would be of interest to identify and quantify Z-AAT in a variety of samples such as cell culture medium, cell or tissue lysate, animal or patient serum. Because this method is specific and sensitive, it would be particularly valuable for detection of Z-AAT in the presence of background M-AAT, for instance when quantifying silencing of Z-AAT in patients undergoing M-AAT augmentation therapy
    corecore