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Original Article

Safe and Efficient Silencing with a Pol II,
but Not a Pol lII, Promoter Expressing
an Artificial miRNA Targeting Human Huntingtin
Edith L. Pfister,1 Kathryn O. Chase,1 Huaming Sun,2 Lori A. Kennington,1 Faith Conroy,1 Emily Johnson,1,5

Rachael Miller,1 Florie Borel,2 Neil Aronin,3 and Christian Mueller4

1Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; 2Horae Gene Therapy Center, University of Massachusetts Medical

School, Worcester, MA 01605, USA; 3Department of Medicine and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA;
4Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; 5Geisel School of Medicine,

Dartmouth College, Hanover, NH 03755, USA

Huntington’s disease is a devastating, incurable neurodegener-
ative disease affecting up to 12 per 100,000 patients worldwide.
The disease is caused by a mutation in the Huntingtin (Htt)
gene. There is interest in reducing mutant Huntingtin by tar-
geting it at the mRNA level, but the maximum tolerable dose
and long-term effects of such a treatment are unknown. Using
a self-complementary AAV9 vector, we delivered a mir-155-
based artificial miRNA under the control of the chicken b-actin
or human U6 promoter. In mouse brain, the artificial miRNA
reduced the human huntingtin mRNA by 50%. The U6, but not
the CbApromoter, produced the artificial miRNA at supraphy-
siologic levels. Embedding the antisense strand in a U6-mir-30
scaffold reduced expression of the antisense strand but
increased the sense strand. In mice treated with scAAV9-
U6-mir-155-HTT or scAAV9-CbA-mir-155-HTT, activated
microglia were present around the injection site 1 month
post-injection. Six months post-injection, mice treated with
scAAV9-CbA-mir-155-HTT were indistinguishable from con-
trols. Those that received scAAV9-U6-mir-155-HTT showed
behavioral abnormalities and striatal damage. In conclusion,
miRNA backbone and promoter can be used together to modu-
late expression levels and strand selection of artificial miRNAs,
and in brain, the CbA promoter can provide an effective and
safe dose of a human huntingtin miRNA.

INTRODUCTION
Huntington’s disease (HD) is a devastating inherited neurodegenera-
tive disease caused by an expansion of the CAG repeat region in
exon 1 of the huntingtin gene.1 Although huntingtin is expressed
throughout the body,2 the polyglutamine expanded protein is espe-
cially toxic tomedium spiny neurons in the striatum and their cortical
connections.3 Patients struggle with emotional symptoms, including
depression and anxiety, and with characteristic movement distur-
bances and chorea. Whereas the mutant protein exerts its toxic effects
through myriad cellular pathways, elimination of huntingtin in the
striatum has the potential to improve the lives of patients by treating
some of the severe effects of the disease. Our goal is to reduce hunting-

tin in the brain using an artificial microRNA (miRNA) targeting hu-
man huntingtin mRNA, which can be delivered using a recombinant
adeno-associated virus (AAV) vector and which will be safe and effec-
tive for long-term use.

RNAi-based therapy depends on successful delivery to striatal medium
spiny neurons and to neurons in layers 5 and 6 of the cortex. Unfortu-
nately, the blood-brain barrier limits the distribution of systemically
delivered oligonucleotide therapeutics to the CNS. Following a single
injection, antisense oligonucleotides targeting the human huntingtin
mRNA can provide a sustained reduction in human huntingtin
mRNA lasting up to 3 months.4 Nevertheless, therapeutics based on
chemically synthesized oligonucleotides would necessitate repeated
administration to maintain silencing. Recombinant AAV vectors can
deliver an RNAi effector in the form of a short hairpin RNA (shRNA)
or artificial miRNA and, in the non-dividing cells of the brain, a single
dose is expected to last indefinitely.5 AAV vector-mediated RNAi has
enormous potential for chronic, severe diseases such as HD.6,7

Initial studies using AAV-mediated RNAi focused on shRNAs as the
effector molecules. shRNAs are transcribed from polymerase III pro-
moters (usually the U6 or H1 promoter) and are designed to bypass
Drosha/DGCR8 cleavage. After export from the nucleus by exportin
5, shRNAs are cleaved by Dicer to form a duplex that can be loaded
into Argonaute-RISC complexes. shRNAs are simple and effective
and, with care, off-target effects due to improper strand loading or
imprecise Dicer cleavage can be minimized.8,9 However, shRNAs
are often produced at extremely high levels, and toxicity due to
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oversaturation of the RNAi machinery has been reported in the liver,
heart, and CNS.10–15 In contrast to shRNAs, artificial miRNAs are de-
signed to undergo cleavage both by Drosha/DGCR8 and Dicer. They
can be transcribed from their own promoters, embedded in an intron,
or located in the 30-UTR of a protein-coding gene. Although in theory
artificial miRNAs could also saturate the endogenous RNAi machin-
ery11, in practice the incorporation of endogenous miRNA flanking
arms reduces expression of the mature small RNA and improves
the safety of vector delivered small RNAs.8

RESULTS
Design and Selection of Huntingtin Targeting Artificial miRNAs

We selected nine sequences targeting the human huntingtin mRNA
(Table 1; Figure 1A). These sequences were selected on the basis of
known targeting rules.16 We cloned two copies of the artificial
miRNA in tandem into a backbone on the basis of the endogenous
miRNA 155 and placed the entire artificial miRNA into the 30-UTR
of EGFP (Figure 1B, top), which was expressed under the control of
a chicken beta-actin promoter. The resulting plasmids were trans-
fected into HeLa cells, and 48 hr later, we harvested the cells and
measured the levels of endogenous huntingtin mRNA using a qRT-
PCR probe targeting the boundary between exons 64 and 65 (Fig-
ure 1A). We have previously shown that probes upstream and down-
stream of this target site report consistent levels of silencing of Yac128
mRNA using assays upstream and downstream of the artificial
miRNA cleavage site.17 Three of the nine artificial miRNAs reduced
huntingtin by >50% (Figure 2A).

We selected the three best sequences from our initial screen for in vivo
experiments. In addition, we included an artificial miRNA on the ba-
sis of a previously published small interfering RNA (siRNA) (E1.4).18

We packaged these candidates into a self-complementary AAV9
vector and injected it directly into the striatum of transgenic mice ex-
pressing human huntingtin with a stretch of approximately 128 poly-
glutamine encoding repeats (Yac128mice).19 At a vector dose of 3.0�
109 vg/striatum, GFP staining was present throughout the striatum,
and human huntingtin mRNA was significantly reduced in mice
treated with either scAAV9-CbA-anti-HTT-6433 (p = 0.0007) (Fig-
ure 2B) compared with mice treated with an scAAV9-GFP.

Expressing the Artificial miRNA from the CbA Promoter Is

Sufficient for Maximal Silencing of Huntingtin mRNA

To investigate the possibility that increasing the expression further
would improve silencing, we cloned a single copy of the most potent
miRNA into an AAV9 vector under the control of the U6 promoter
(Figure 1B, bottom). Mice were injected unilaterally with the original
two-copy scAAV9-CbA-anti-HTT-6433, scAAV9-CbA-anti-HTT-
5155, scAAV9-U6-anti-HTT-6433, or scAAV9-U6-anti-HTT-5155.
One month later, we harvested the striatum and confirmed GFP
expression. We measured the levels of huntingtin mRNA by qRT-
PCR. There was a significant reduction in human huntingtin in
mice treated with scAAV9-U6-anti-HTT-5155, scAAV9-CbA-anti-
HTT-6433, or scAAV9-U6-anti-HTT-6433 but not in those treated
with scAAV9-CbA-anti-HTT-5155 compared with the contralateral
(non-injected) side (Figure 2C). We compared the relative quantity
of the mature artificial miRNA guide strand by qPCR. Expression
from scAAV9-U6-anti-HTT-6433 was about 150 times higher than
from scAAV9-CbA-anti-HTT-6433 (Figure S1).

Using the contralateral side as a control for each animal reduces the
inter-animal variability by controlling for animal to animal variation
in huntingtin expression. This approach assumes that there is no
spread of AAV or artificial miRNA from the injected to the non-in-
jected, contralateral side. In mice injected with scAAV9-GFP unilat-
erally, we often see a small number of GFP-positive neurons on the
contralateral side. Therefore, using the contralateral side as the con-
trol may underestimate silencing. To eliminate this potential con-
founding effect, we repeated the experiment using a group of animals
injected with PBS as the control. We confirmed that both scAAV9-
CbA-anti-HTT-6433 and scAAV9-U6-anti-HTT-6433 reduced hun-
tingtin mRNA by approximately 50% in the striatum (Figure 2D).We
did not observe a difference in silencing between the two studies, sug-
gesting that spread to the contralateral side is insufficient to produce
silencing. To determine if we could achieve huntingtin silencing with
a lower vector dose, we injected mice (n = 3/group) with vector
diluted by 0.5 log (final dose 1.5 � 109 vg/striatum) and 1 full log
(final dose 3.0 � 108 vg/striatum). GFP is present in 89% of the stria-
tum with the highest dose of the vector, but reducing the dose of the
vector results in reduced spread (Figures 3A and 3B) and decreased
silencing of human huntingtin mRNA (Figure 3C).

Expression of the Artificial miRNA Targeting Huntingtin from a

U6 Promoter Results in Expression of Multiple Small RNA

Species at Levels Comparable with Those of Endogenous

miRNAs

To examine whether the same small RNA species were produced
from processing of both the U6 and CbA promoter-driven artificial
miRNA, we injected groups of mice unilaterally with either
scAAV9-CbA-anti-HTT-6433 or scAAV9-U6-anti-HTT-6433. We
cloned and sequenced the total 18- to 30-nucleotide small RNAs at
2 weeks post-injection. We mapped the sequences back onto the pre-
dicted hairpin structure of the artificial miRNA (Figure 4A). In both
scAAV9-CbA-anti-HTT-6433- and scAAV9-U6-anti-HTT-6433-in-
jected groups, 96% of the sequences mapping to the AAV genome

Table 1. Predicted Antisense Sequences Targeting Human Huntingtin

Name Predicted Antisense Sequence

miR-E14-anti-HTT 50-UUCAUCAGCUUUUCCAGGGUC-30

miR-178-anti-HTT 50-UUGAGGCAGCAGCGGCUGUGC-30

miR-1873-anti-HTT 50-UAAAUGUGCCUGUUGAAGGGC-30

miR-2029-anti-HTT 50-AAGAGGUGCAGAGUCAUCAUC-30

miR-4173-anti-HTT 50-UUCUGGAGGACAUCAAACCAU-30

miR-4448-anti-HTT 50-UGAACUGGCCCACUUCAAUGU-30

miR-5155-anti-HTT 50-UAGCGUUGAAGUACUGUCCCC-30

miR-6088-anti-HTT 50-UUCCAUUGGCAACUGGGCCAU-30

miR-6433-anti-HTT 50-UAAGCAUGGAGCUAGCAGGCU-30
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were the expected small RNA product. Imprecise Dicer or Drosha
cleavage of miRNA precursors can result in small RNAs with hetero-
geneous 50 ends. These noncanonical small RNA isoforms (isomirs)
can have a different target profile than the canonical isoform. There-
fore, we looked at the distribution of 50 ends along the sequence of
the pre-miRNA. Fewer than 4% of the small RNAs produced from
scAAV9-CbA-anti-HTT-6433 and scAAV9-U6-anti-HTT-6433
were noncanonical isomirs (Figure 4B; Table 2). However, because
of the high levels of expression produced by the U6 promoter, it
should be noted that these represent a much higher proportion of
the total small RNA pool in the scAAV9-U6-anti-HTT-6433 group
than in those mice injected with scAAV9-CbA-anti-HTT-
6433. In the group injected with the U6 promoter-driven artificial
miRNA, however, the huntingtin-targeting sequence dominated the
sequencing results, accounting for half (50%) of the combined
genome matching and AAV vector matching sequences, whereas in
the mice injected with the CbA vector, only 5% of the sequences
matched the vector-encoded small RNA (Figure 4B). This finding
means that small RNAs with alternative seed sequences, including
the sense strand, +1 and�1 products, could be present at levels com-
parable with functional endogenous miRNAs.

Endogenous miRNA 30 sequences are commonly used as a scaffold
for artificial miRNA.8,20 To determine if the isomir profiles derived
from this scaffold were more favorable, we embedded the anti-
HTT-6433 sequence in a miR-30 backbone and injected into 10-
week-old Yac128 mice (Figure 4C). The mir-30 scaffold produces
levels of the mature artificial miRNA comparable with those pro-

duced by the CbA promoter (Figure 4D) and also reduces human
huntingtin by close to 50% (Figure S2). Unlike the mir-155 scaffold,
the mir-30 scaffold produces the mature sense (passenger) strand at
levels comparable with the antisense (guide) strand. When designing
artificial miRNA, target selection can be critical to introducing the
correct asymmetry. Here, miRNA backbone can be used as an
additional method to control the asymmetry of artificial miRNA.
For this huntingtin-targeting sequence, the combination of CbA pro-
moter with mir-155 backbone is unique, as it is the only combination
that produces only the intended antisense strand above background
(Figure 4B).

Long-Term Striatal Expression of mir-HTT-6433 from a U6

Promoter Is Toxic

Having established that both scAAV9-U6-anti-HTT-6433 and
scAAV9-CbA-anti-HTT-6433 silence human huntingtin in the short
term, we wished to evaluate the duration of effect and long-term
consequences of expression and overexpression of the huntingtin-
targeting artificial miRNA. We injected scAAV9-U6-anti-HTT-6433
or scAAV9-CbA-anti-HTT-6433 unilaterally into the striatum of
Yac128 mice. Six months after injection, we noticed that the mice
injected with scAAV9-U6-anti-HTT-6433 appeared behaviorally
abnormal. When a new nestlet is placed in the cage, normal mice will
shred the material, producing a nest. The mice injected with
scAAV9-U6-anti-HTT-6433 appeared to leave the bedding material
untouched. To document this, we replaced the nestlets in each cage.
Twenty-four hours later, the mice treated with scAAV9-U6-anti-
HTT-6433 had not used the new nestlets, whereas the bedding of

Figure 1. Design of Artificial miRNAs Targeting Human Huntingtin

(A) Position of target sites on the human huntingtin mRNA. Target sites are distributed throughout the coding region. The location of the qPCR assay, which spans the junction

between exons 64 and 65, is also depicted. (B) AAV9 constructs expressing a miRNA from the CbA (polII) and U6 promoters. The CbA promoter-driven miRNA is located in

the 30-UTR of the GFP gene (top), whereas the construct containing the U6 promoter-driven artificial miRNA co-expresses GFP from a separate promoter (bottom).
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PBS and scAAV9-CbA-anti-HTT-6433 mice looked as expected (Fig-
ure 5A). Using an automated home-cage monitoring system, we re-
corded the mice for 24 hr. This system produces unbiased tracking of
the movements of the mice over the course 24 hr, without interference
from the experimenter. Individual mice are placed in the cage, and the
computer records the amount of time they spend moving versus re-
maining stationary. The mice treated with scAAV9-U6-anti-HTT-
6433 spent significantly more time moving around their home cage
than mice treated with PBS or with scAAV9-CbA-anti-HTT-6433
(Figure 5B). Finally, we measured the average time it took for the
mice to cross an elevated beam. For this test, we require that
the mice complete the beam crossing three times. Whereas both
scAAV9-CbA-anti-HTT-6433-injected andPBS-injectedmice crossed
the beam easily, two of the four remaining mice in the scAAV9-U6-
anti-HTT-6433 groupwere unable to successfully cross, either jumping
or falling off the beam (Figure 5C).We repeated this experiment with a
larger group of animals, testing them on the beam at regular intervals.
Mice injected with scAAV-U6-anti-HTT-6433 at 6 weeks of age were
unable to cross the beam by 4 months post-injection (Figure S3A).
Older Yac128 mice (injected at 7 months of age) exhibited an age-
related increase in time to cross the beam. This increase was present
in both naive mice and in mice treated with AAV9-CbA-anti-HTT-

6433. Like the younger animals, older mice treated with scAAV9-
U6-anti-HTT-6433 showed a deterioration of beam crossing 4months
post-injection (Figure S3B). By 6 months post-injection, three of five
animals injected with AAV9-U6-anti-HTT-6433 failed to cross the
beam in under 1 min, whereas all of the mice in the AAV9-CbA-
anti-HTT-6433 and naive groups crossed within that time.

Neuropathological findings explained the behavioral outcomes. On
the injected side, the scAAV9-U6-anti-HTT-6433 mice showed
enlargement of the ventricle, loss of DARPP-32-positive neurons,
and striatal shrinkage (Figure 6). It has previously been shown that
Yac128 mice display increased numbers of activated microglia
compared with wild-type mice.21 We expected, on the basis of the
loss of DARPP-32 neurons, that the mice injected with scAAV9-
U6-anti-HTT-6433 would exhibit increased microglial activation,
but we were curious whether the scAAV9-CbA-anti-HTT-6433
mice would also exhibit signs of immune activation. We classified
Iba-1 positive cells as resting or active on the basis of morphology.22

One month after injection, we were able to locate the needle track in
mice injected with both scAAV9-U6-anti-HTT-6433 and scAAV9-
CbA-anti-HTT-6433 (Figure 7A, top). Five months later, this was
no longer true in the CbA-treated mice. Meanwhile, in the surviving

Figure 2. Artificial miRNAs Targeting Human

Huntingtin Reduce the Huntingtin mRNA in Cell

Culture and In Vivo

Expressing an artificial miRNA from the U6 promoter does

not improve silencing of huntingtin in the mouse striatum.

(A) HeLa cells were transfected with plasmids expressing

artificial miRNAs targeting human huntingtin, and the

huntingtin mRNA levels were measured after 48 hr by

qPCR. Huntingtin expression was normalized to HPRT to

account for well-to-well variation in cell number and is

expressed relative to the naive cells. Error bars represent

SE of three independent experiments. The negative

control is an anti-SOD1miRNA, and the positive control is

an siRNA (E1-4) targeting exon 1 of the huntingtin mRNA.

Data were analyzed by one-way ANOVA with Bonferroni

comparison. Three artificial miRNAs, 5155 (p = 0.03),

1873 (p = 0.04), and 6433 (p = 0.05), significantly reduce

the native huntingtin mRNA relative to untreated HeLa

cells. (B) Top candidates were selected for in vivo testing

on the basis of the results in cell culture. Mice (n = 5/

group) were injected unilaterally in the striatum. One

month post-injection, the striatum was harvested, and

GFP expression was verified. Data are normalized to

HPRT and expressed relative to the GFP-only control.

Only scAAV9-CbA-anti-6433 reduced human huntingtin

significantly (p = 0.0007, one-way ANOVA) relative to the

GFP control. (C) Relative quantity of huntingtin mRNA in

the injected striatum 1 month after injection of the U6 and

CbA promoter-driven artificial miRNAs targeting sites

5155 (left) and 6433 (right). Data are expressed relative to the non-injected side (n = 5 mice/group). scAAV9-U6-anti-5155, scAAV9-U6-anti-6433, and scAAV9-CbA-anti-

6433 reduce human huntingtin significantly in the striatum (p < 0.0001, p = 0.003, and p < 0.0001 respectively, two-way ANOVA). (D) Relative quantity of huntingtin mRNA in

mice 1 month after injection with the U6 and CbA promoter-driven miRNA targeting site 6433. In this experiment, a fourth group of mice were injected with PBS (vehicle) only,

and data are expressed relative to this group (n = 5 mice/group). Again, both scAAV9-CbA-anti-6433 and scAAV9-U6-anti-6433 reduce human huntingtin significantly

relative to PBS injection (p = 0.0007 and p = 0.002, respectively), but there is no significant difference between the two promoters. Error bars in all panels represent SE of

independent replicates.
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striatum, the scAAV9-U6-anti-HTT-6433 mice exhibited increased
Iba1 staining (Figure 7A, bottom), an increase in total and activated
microglia, and a decrease in the number of resting microglia (Figures
7B–7D). This suggests an ongoing innate immune response, which
could be a result of or participate in striatal cell death. In contrast,
by 6 months post-injection, the mice treated with scAAV9-CbA-
anti-HTT-6433 do not show an increase in microglial activation.
We considered the possibility that Yac128 mice, which may have a
“primed” immune system, may be more susceptible to toxicity by
miRNA overexpression than wild-type mice. To determine if toxicity
was dependent on the presence of mutant huntingtin, we injected
wild-type C57BL/6 mice and FVB mice with the same vectors and as-
sessed the consequences of the U6-driven miRNA in that context. In
FVB mice, the effect was similar to that in Yac128 mice with rapid
degeneration on the beam and severely enlarged ventricles (data
not shown). In C57BL6 mice, the effect was present but less pro-
nounced (Figure S3). Although there was an initial increase in time
to cross the beam in the U6 cohort, at the study endpoint, there
was no significant difference between groups (Figure S4A). Striatal
shrinkage was also less severe in the C57BL6 mice (Figure S4B).

We examined the small RNA sequencing for clues to explain the
toxicity. At 1 week post-injection, the mice treated with CbA-anti-

HTT-6433 produced 32 endogenous miRNAs whose expression was
changed greater than 2-fold compared with PBS-injected mice (Table
S1). Of these, 18 (56%) were downregulated, whereas 14 (44%) were
upregulated. In themice treated with U6-anti-HTT-6433, 58miRNAs
were significantly altered, with 33 being downregulated (57%) and 25
(43%) being upregulated.We also performed RNA sequencing (RNA-
seq) on total RNA. In the mice injected with AAV9-U6-anti-HTT-
6433, 44 transcripts were significantly downregulated, while 30 were
significantly upregulated compared with the naive control. In the
AAV-CbA-anti-HTT-6433 group, 12 transcripts were downregulated
and 4 were upregulated. Overall, transcripts containing a seed
sequence target are downregulated in the scAAV-U6-anti-HTT-
6433 group but not the scAAV9-CbA-anti-HTT-6433 group (Figures
S5B and S5F). Those originating from the +1 and�1 positions and the
sense strand (Figures S5A, S5C, S5D, S5E, S5G, and S5H) were not
altered. This result suggests that off-target effects are exacerbated by
overexpression and are likely to be due to overexpression of the in-
tended huntingtin-targeting artificial guide strand rather than to the
presence of other small RNAs with alternative seed sequences.

DISCUSSION
We have achieved a higher level of expression of the vector-encoded
small RNA than has been previously described for artificial miRNAs.

Figure 3. Reducing the Vector Dose Results in Reduced Spread and Reduced mRNA Silencing in the Mouse Striatum

(A) Representative images of GFP spread in mice injected with a vector encoding both the huntingtin-targeting artificial miRNA and EGFP at three different doses. (B)

Quantification of GFP spread in the mouse striatum 1 month after injection (n = 3/group). ImageJ was used to outline the GFP-positive area and the striatum and to calculate

the percentage of the striatum that contained GFP. (C) qRT-PCR to measure human huntingtin mRNA in the striatum of Yac128 mice (n = 3/group) 1 month post-injection.

Data for 3.0 � 109 are shown in Figure 2B. Error bars in (B) and (C) represent SE of independent replicates.
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We show that the mir-155 backbone produces mostly the intended
small RNA species, reducing the chance of off-target effects due to
improper strand loading or imprecise processing. We also show
that the mir-155-based artificial miRNA using a CbA promoter re-
duces human huntingtin by 50% at 1 month and causes no overt
toxicity up to 6 months. Using a U6 promoter increases the levels
of this artificial miRNA guide strand but does not result in additional
huntingtin lowering. Expression of the anti-HTT artificial miRNA
from a CbA promoter in the context of the scAAV9 and the mir-
155 backbone is sufficient to achieve maximum silencing from a
direct injection. We have previously reported that the same artificial
miRNA reduces human huntingtin by up to 80% in liver.17 Unlike the
liver, the striatum contains a highly heterogeneous population of cell
types, including medium spiny neurons, cholinergic and GABAergic
interneurons, astrocytes, oligodendrocytes, and microglia. In homo-
zygous Q140 knockin mice, individual medium spiny neurons
show variable levels of huntingtin mRNA expression.23 Treatment
with an artificial miRNA targeting mouse huntingtin shifts the distri-
bution, but does not eliminate huntingtin mRNA from DARPP32-
positive medium spiny neurons.23 This suggests that a relatively small
amount of huntingtin mRNA is present in non-neuronal cell types
and hints at the presence of a miRNA-inaccessible pool of huntingtin
mRNA in medium spiny neurons. Additional delivery routes, AAV
optimization, improved formulation, and additional therapeutic moi-

eties could improve silencing by improving delivery to other cell
types, increasing distribution and targeting inaccessible huntingtin
mRNA.

There are several possible explanations for the observed toxicity of the
AAV9-U6-anti-HTT-6433. First, overexpression of the miR-155-
based hairpin results not only in overexpression of the intended
mature artificial miRNA strand, but it also reveals additional process-
ing products. These additional products are expressed at levels
comparable with functional endogenous and artificial miRNAs and
increase the potential for sequence-specific off-target effects. How-
ever, our results indicate that only the artificial miRNA guide strand
is expressed at a high enough level to produce a detectable global
pattern of seed-mediated silencing. So, although we have been unable
to find a single off-target mRNA that would explain the observed
toxicity, overexpression of the guide strand may in fact be revealing
an otherwise hidden off-target effect. However, species-specific toxic-
ities due to seed-mediated off-target effects have been reported for
other huntingtin-targeting artificial miRNAs.24 Second, overexpres-
sion of an exogenous miRNA might disrupt the balance of endoge-
nous miRNAs. In liver, expression of an shRNA causes a reduction
in the predominant liver miRNA, mir-122.15 In brain, there is
no corresponding dominant miRNA; nonetheless, it is conceivable
that overexpression of an artificial miRNA causes a disruption in

Figure 4. Expression of Artificial mir-155-Based miRNA from a U6 Promoter Results in Overexpression of the Huntingtin-Targeting Guide Strand, whereas

the mir-30-Based Artificial miRNA Produces Both the Guide and Other Sequences

Predicted hairpin structures of the mir-155-6433 (A) and mir-30-6433 (C) hairpins. (B) Start positions of reads mapping to the huntingtin-targeting mir-155-based artificial

miRNA hairpin under control of the U6 (red) and CbA (blue) promoters or non-injected side of the CbA mice (black). Positions are reported relative to the mature strand, and

reads are normalized to the total number of endogenous miRNAmapped in each sample. The horizontal line represents the background levels of the artificial miRNA found in

control samples. Data were analyzed using n = 3mice/group. (D) Start positions of readsmapping to the huntingtin-targeting artificial miRNA embedded in amir-30 backbone

and expressed from a U6 promoter (injected side, red; non-injected side, black). Error bars in all panels represent SE of independent replicates.
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endogenous miRNA in brain. Additional explanations for the
observed toxicity include saturation of various components of the
cellular RNAi machinery (Argonaute2, exportin-5) and an innate
immune response. We do see evidence for a long-lived immune
response in the form of activated microglia that persist up to 1 month
post-injection, even in mice treated with AAV9-CbA-anti-HTT-
6433. These toxicities may be exacerbated by ongoing disease pro-
cesses or the presence of a toxic disease-related transgene. The fact
that some strains of mice exhibit accelerated pathology should
encourage us to consider factors that might influence susceptibility
to such toxicity and caution when transitioning vectors from one
animal species or model to another.

In non-human primates, partial silencing of huntingtin with a U6
promoter-driven, mir-30-based artificial miRNA appears safe up to
6 weeks,25 and intrathecal delivery of a U6 promoter-driven artificial
miRNA targeting SOD1 is safe in non-human primates.26. It is
possible that the toxicity of the vector carrying the U6 promoter is
exacerbated by the method of delivery, particularly in the small brain
of a mouse. When we deliver an AAV vector by direct injection to the
striatum, there is a limited transport of vector away from the injection
site, and the local concentration is high. In some cases, a vector with a
weaker promoter may be sufficient to achieve maximum silencing.
Likewise, the mir-30 backbone, which seems to produce lower levels
of the mature artificial miRNA, may also be preferable. As we move
toward other modes of delivery in which the vector distributes to a
wider area, individual cells will receive fewer copies of the AAV,
and high levels expression of the artificial miRNA produced from a
strong promoter and optimized backbone may be necessary. In our
hands, the mir-155 backbone produces higher levels of the mature

artificial miRNA than the mir-30 backbone. The level and expression
pattern of the mature artificial miRNA can be further tuned by pro-
moter choice. Such tuning may be necessary as we explore additional
AAV capsids and delivery methods. Promoter, backbone, AAV sero-
type, and injection method should be considered together when
attempting to deliver vector-mediated RNAi to the brain.

Finally, we show using the same anti-HTT-6433 sequence that
the miRNA backbone can influence the strand biasing of artificial
miRNA processing. When we placed our targeting sequence in the
mir-30 backbone, the sense and antisense strands were produced at
very similar levels. In contrast, in the context of the mir-155 back-
bone, there was strong asymmetry, and the antisense strand predomi-
nated. Asymmetric strand selection of miRNA is due primarily to
thermodynamic instability at the 50 end of the guide/antisense strand.
When a different, luciferase-targeting sequence is embedded in the
mir-155 backbone, both strands were produced in roughly equal pro-
portions.27 However, components of the pri-miRNA may also influ-
ence asymmetry. Slight differences in the construction of the miRNA
backbone are common. These differences likely affect processing
efficiency and fidelity of artificial miRNAs, while interactions between
the targeting sequence and backbone determine strand selection.
A comprehensive analysis of pri-miRNA features28 was used to
design from scratch a miRNA scaffold that is processed as efficiently
as the most commonly used endogenously derived miRNA scaffolds.
This should allow further refinement and improvement of artificial
miRNA.

MATERIALS AND METHODS
Cell Culture and Screening Assays

HeLa cells were maintained in DMEM, high glucose with 10% heat-
inactivated fetal bovine serum (FBS), and 1% penicillin streptomycin
(ThermoFisher). Twenty-four hours before transfection, cells were
seeded onto six-well plates at 0.8 � 106 to 1.0 � 106 cells/well. On
the day of transfection, we first replaced the growth medium with
1.6 mL of Opti-MEM (ThermoFisher). Plasmids were transfected in
triplicate using 2 mL/well of DharmaFECT Duo (Dharmacon). Each
well received 0.5 mg of plasmid DNA. Forty-eight hours after transfec-
tion, the cells were harvested, and total RNA was extracted using the
MirVana RNA isolation kit. We made cDNA using 1 mg of RNA per
reaction using oligo-dT and Superscript III (Invitrogen). Htt mRNA
was measured using TaqMan assay # (ThermoFisher). Relative levels
of Htt mRNA were calculated using the DDC(T) method,29 with hu-
man hypoxanthine-guanine phosphoribosyltransferase (Hprt) as the
housekeeping gene. Each experiment was performed three times us-
ing three independent cell passages.

Mouse Housing, Injections, and Maintenance

YAC128 and wild-type FVB mice were purchased from The Jackson
Laboratory. They were bred on the FVB background by mating
wild-type male mice with YAC128 females. The resulting heterozy-
gous YAC128 and wild-type mice were maintained on a 12:12 light
schedule and were given access to food and water ad libitum. All ani-
mals were maintained and used according to the Institutional Animal

Table 2. Percentage of Total Hairpin Mapping Reads for Each Seed

Sequence Represented in the Small RNA Sequencing Results

Seed Sequence (2–8) U6-Anti-HTT-6433 CbA-Anti-HTT-6433

GUAAGCA (�2) 0.01 0.01

UAAGCAU (�1) 0.05 0.57

AAGCAUG (antisense) 96.43 96.68

AGCAUGG (+1) 0.97 0.85

GCAUGGA (+2) 0.03 0.04

CAUGGAG (+3) 0.03 0.02

AUGGAGC (+4) 0.09 0.07

UGGAGCU (+5) 0.53 0.42

GGAGCUA (+6) 0.23 0.15

GAGCUAG (�2) 0.06 0.09

AGCUAGC (�1) 0.04 0.04

AGCCUGC (sense) 1.49 0.97

GCCUGCU (+1) 0.03 0.02

CUGCUCU (+2) 0.00 0.03

UGCUCUC (+3) 0.00 0.01

Total 99.99 99.97
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Care and Use Committee guidelines of University of Massachusetts
Medical School (docket A978-12 or A978-15). Genotypes were veri-
fied by PCR of DNA extracted from tail snips or ear punches. Mice
were injected with selected AAV directly into the striatum by means
of a small animal stereotax SAS-4100 (ASI Instruments) aided by
UMPC3 or UMPC4 microinjectors (World Precision Instruments).
Micewere anesthetizedwith 284mg/kg of tribromoethanol andplaced
in the stereotax. Surgery was performed using the bregma as the zero
point, measuring anterior 1.0 mm, lateral 2.0 mm, and lowering a 33
gauge needle 3.0 mm into the striatum. The pumps were set to deliver
3.0 mL at a rate of 125 nL/min. After the injections the mice were al-
lowed to recover on a warming pad and then placed back in their cages
in the housing area. Females were housed together in groups of three
and males were housed separately to prevent fighting.

Tissue Extraction

At the appropriate time point, mice were sacrificed and tissue was
extracted for RNA analysis or immunohistochemistry. For RNA
extraction, mice were anesthetized and killed by cervical dislocation.
Brains were removed, and the striatum was dissected out manually,

removing as much white matter as possible. To ensure that only an-
imals in which the vector was delivered to the striatum were analyzed,
GFP expression was visualized by placing the entire tissue chunk
under the fluorescent scope. Tissue was then placed in RNALater
(Ambion) for 24 hr, at which point the RNAlater was removed and
the tissue was stored at �80�C until use. Separate mice were used
for immunocytochemistry. These mice were deeply anesthetized
and perfused intracardially first with saline and then with 4% parafor-
maldehyde. They were postfixed overnight in cold 2% paraformalde-
hyde and then stored in PBS at 4�C. Coronal sections were made by
slicing 40 mm sections on the Leica VT1000s vibratome.

Mouse Behaviors

Beam Walking

Mice were trained to cross a beam 2 cm in diameter. After training,
we recorded the mice as they crossed from one end of the beam to
the other. We recorded three trials per mouse. From the recording
we measured the amount of time it took for the mice to cross from
mark on one end of the beam to the other. The investigator was
not blinded to the treatment group of each mouse.

Figure 5. Long-Term Striatal Expression of mir-HTT-6433 from a U6 Promoter Causes Behavioral Abnormalities

(A) Six months post-injection, mice injected with the U6 promoter-driven mir-HTT-6433 failed to make nests. When new nestlets are placed in their cages, mice injected

intrastriatally with PBS (left) or with CbA-mir-HTT-6433 (center) shred the bedding, making a nest. In contrast, mice injected with U6-mir-HTT-6433 do not. Pictures were

taken 24 hr after placing new nestlets in the cage. (B) Home cage monitoring of Yac128 mice treated with PBS, CBA-mir-HTT-6433, or U6-mir-HTT-6433. Animals were

individually placed in an automated home cagemonitoring system. The amount of time spent moving around the cage was recorded for 24–27 hr. Average time per hour was

calculated by dividing the total amount of time by the number of hours of recording (n = 4 U6-mir-HTT-6433, n = 5 PBS and CbA-mir-HTT-6433). (C) Animals were trained to

cross a round beam and enter a darkened box. For each mouse, the average time to cross from one end was calculated for three recorded trials. If a mouse failed to cross

within 60 s, we recorded the time as >60 s. Error bars in (B) and (C) represent SE of independent replicates.

www.moleculartherapy.org

Molecular Therapy: Nucleic Acids Vol. 7 June 2017 331

http://www.moleculartherapy.org


Home Cage Activity

Micewere placed singly in an automated home cage phenotyping scan-
ning system (Clever Sys) for 26 hr. This system records and automat-
ically calculates the activity of the mouse during both the active and
inactive periodwithout the presence or interference of the investigator.
To calculate the average active time per hour, we first removed the first
hour of data, during which the mouse acclimates to the new environ-
ment. We then divided the total time spent walking by the total time.

Immunohistochemistry and Quantification

Fixed tissue slices were blocked with 3% hydrogen peroxide for 3 min
and then incubated with 0.5% triton x for 20 min. Immunocytochem-
istry was performed using Vector Laboratories Elite ABC kit re-
agents and protocols for rabbit- or mouse-derived antibodies against
DARPP32 (Abcam ab40801, 1:10,000 dilution), Iba1 (Wako 019-
19741, 1:1,000 dilution), GFP (Life Technologies G10362, 1:1,000
dilution), andNeuN (EMDMilliporeMAB377, 1:1,000 dilution). Sec-
tions were stained for 2 min with diaminobenzidine using the Metal
Enhanced DAB Substrate Kit (Pierce). For quantification of GFP in
the striatum, eight coronal sections spanning from anterior to poste-
rior of mouse striatum were stained for GFP and mounted onto
microscope slides. Pictures were taken at 2�magnification on Nikon

Eclipse E600 microscope of entire striatum using Nikon DS-Qi1MC
camera with NIS-Elements. From these pictures, area of striatum
on either side of each mouse brain and GFP within striatum were out-
lined using the polygon selection tool in ImageJ and calculated with
the analyze:measure function. The percentage of striatal area satu-
rated with GFP was calculated using the areas measured by ImageJ
to show the percentage distribution of GFP-tagged AAV within
each coronal section. The total percentage area of GFP within stria-
tum was calculated by adding the area of GFP among all coronal sec-
tions within each brain, beside the total striatal area of all sections.

Cloning of Artificial miRNA and AAV Packaging

Artificial miRNAs were designed and cloned according to the proto-
col detailed by Toro Cabrera and Mueller.16 AAVs were packaged by
the University of Massachusetts vector core, according to published
protocols.30

Small RNA Library Cloning and Analysis

Total RNAwas extracted using theMirVanaRNA isolation kit, accord-
ing to themanufacturer’s protocol. Size selection of the 18- to 30-nucle-
otide RNAs was performed using 5 mg of total RNA on a 15% dena-
turing polyacrylamide gel. Following size selection, the small RNAs
were ethanol precipitated and ligated to a pre-adenylated 30-adaptor
(50-rAppTGGAATTCTCGGGTGCCAAGG/ddC/-30). The ligated
productswere annealed to theRTprimer (50-CCTTGGCACCCGAGA
ATTCCA-30) and ligated to a 50-adaptor (RNA: 50-GUUCAGAGUUC
UACAGUCCGACGAUC-30). Reverse transcription was performed
usingAMVReverse transcriptasemix (NEB) andPCR-amplified using
AccuPrime Pfx DNA Polymerase (Invitrogen) with one universal
primer (50-AATGATACGGCGACCACCGAGATCTACACGTTCA
GAGTTCTACAGTCCGA-30) and one barcoded primer (50-CAAGC
AGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCCT
TGGCACCCGAGAATTCCA-30). Libraries were sequenced on the
Illumina HiSeq at the University of Massachusetts Deep Sequencing
Core. Libraries were mapped to the mm9 genome and to the AAV
genome using bowtie.31 We classified miRNA species on the basis of
the position of the 50 end mapping on the miRNA hairpin; therefore
each species consists of all the small RNAswith shared seed sequences.
The 30 end was not considered in species assignment. Differential
expression of endogenous miRNAs was analyzed using the edgeR
package,32 which is not sensitive to changes in distribution caused
by overexpression of the AAV-derived artificial miRNA in the U6
group. The data discussed in this publication have been deposited in
NCBI’s Gene Expression Omnibus33 (GEO: GSE97353).

mRNA Library Cloning and Analysis

RNA was extracted as described above. Libraries were constructed
by standard methods.34 Reads were mapped using TopHat2,35 and
differential expression was calculated using the DESeq2 package.36

SUPPLEMENTAL INFORMATION
Supplemental Information includes five figures and two tables and
can be found with this article online at http://dx.doi.org/10.1016/j.
omtn.2017.04.011.

Figure 6. Long-Term Expression of Anti-HTT-6433 from a U6 Promoter

Causes Striatal Shrinkage

(A) Representative images of DARPP-32 staining on the injected side in Yac128

mice at 1 (top) and 6 (bottom) months post-injection. (B) Quantification of DARPP-

32 positive area 6 months post-injection. Error bars in (B) represent SE of inde-

pendent replicates.
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