2,115 research outputs found
In the Driver's Seat: Rico and Education
The Rain in Cumulus over the Ocean (RICO) field campaign carried out a wide array of educational activities, including a major first in a field project—a complete mission, including research flights, planned and executed entirely by students. This article describes the educational opportunities provided to the 24 graduate and 9 undergraduate students who participated in RICO
Bordoni Receives 2009 James R. Holton Junior Scientist Award
Simona Bordoni received the 2009 James R. Holton Junior Scientist Award at the 2009 AGU Fall Meeting, held 14–18 December in San Francisco, Calif. The award recognizes outstanding research contributions by a junior atmospheric scientist within 3 years of his or her Ph.D
A collaborative tool for mobilizing knowledge in agrobiodiversity and the interface with climate change: the Platform for Agrobiodiversity Research
Poster presented at 2nd ANAFE International Symposium. Lilongwe (Malawi), Jul 200
Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale
Open access funding provided by Universita degli Studi di Pavia within the CRUI-CARE Agreement. This work has been in the frame of the ANDROMEDA project, which has been supported by Fondazione Cariplo, grant no. 2017-0677.We thank the anonymous reviewers for their contributions in
improving the paper. We thank Beatrice Corradini for the help in
the collection of rainfall data and of shallow landslide events.A combined method was developed to forecast the spatial and the temporal probability of occurrence of rainfall-induced shallow landslides over large areas. The method also allowed to estimate the dynamic change of this probability during a rainfall event. The model, developed through a data-driven approach basing on Multivariate Adaptive Regression Splines technique, was based on a joint probability between the spatial probability of occurrence (susceptibility) and the temporal one. The former was estimated on the basis of geological, geomorphological, and hydrological predictors. The latter was assessed considering short-term cumulative rainfall, antecedent rainfall, soil hydrological conditions, expressed as soil saturation degree, and bedrock geology. The predictive capability of the methodology was tested for past triggering events of shallow landslides occurred in representative catchments of Oltrepò Pavese, in northern Italian Apennines. The method provided excellently to outstanding performance for both the really unstable hillslopes (area under ROC curve until 0.92, true positives until 98.8%, true negatives higher than 80%) and the identification of the triggering time (area under ROC curve of 0.98, true positives of 96.2%, true negatives of 94.6%). The developed methodology allowed us to obtain feasible results using satellite-based rainfall products and data acquired by field rain gauges. Advantages and weak points of the method, in comparison also with traditional approaches for the forecast of shallow landslides, were also provided.Universita degli Studi di Pavia within the CRUI-CARE AgreementFondazione Cariplo
2017-067
Interannual Variability in the Large-Scale Dynamics of the South Asian Summer Monsoon
This study identifies coherent and robust large-scale atmospheric patterns of interannual variability of the South Asian summer monsoon (SASM) in observational data. A decomposition of the water vapor budget into dynamic and thermodynamic components shows that interannual variability of SASM net precipitation (P − E) is primarily caused by variations in winds rather than in moisture. Linear regression analyses reveal that strong monsoons are distinguished from weak monsoons by a northward expansion of the cross-equatorial monsoonal circulation, with increased precipitation in the ascending branch. Interestingly, and in disagreement with the view of monsoons as large-scale sea-breeze circulations, strong monsoons are associated with a decreased meridional gradient in the near-surface atmospheric temperature in the SASM region. Teleconnections exist from the SASM region to the Southern Hemisphere, whose midlatitude poleward eddy energy flux correlates with monsoon strength. Possible implications of these teleconnection patterns for understanding SASM interannual variability are discussed
Coupled High-Latitude Climate Feedbacks and Their Impact on Atmospheric Heat Transport
The response of atmospheric heat transport to anthropogenic warming is determined by the anomalous meridional energy gradient. Feedback analysis offers a characterization of that gradient and hence reveals how uncertainty in physical processes may translate into uncertainty in the circulation response. However, individual feedbacks do not act in isolation. Anomalies associated with one feedback may be compensated by another, as is the case for the positive water vapor and negative lapse rate feedbacks in the tropics. Here a set of idealized experiments are performed in an aquaplanet model to evaluate the coupling between the surface albedo feedback and other feedbacks, including the impact on atmospheric heat transport. In the tropics, the dynamical response manifests as changes in the intensity and structure of the overturning Hadley circulation. Only half of the range of Hadley cell weakening exhibited in these experiments is found to be attributable to imposed, systematic variations in the surface albedo feedback. Changes in extratropical clouds that accompany the albedo changes explain the remaining spread. The feedback-driven circulation changes are compensated by eddy energy flux changes, which reduce the overall spread among experiments. These findings have implications for the efficiency with which the climate system, including tropical circulation and the hydrological cycle, adjusts to high-latitude feedbacks over climate states that range from perennial or seasonal ice to ice-free conditions in the Arctic
- …