412 research outputs found

    Space-time sensors using multiple-wave atom levitation

    Full text link
    The best clocks to date control the atomic motion by trapping the sample in an optical lattice and then interrogate the atomic transition by shining on these atoms a distinct laser of controlled frequency. In order to perform both tasks simultaneously and with the same laser field, we propose to use instead the levitation of a Bose-Einstein condensate through multiple-wave atomic interferences. The levitating condensate experiences a coherent localization in momentum and a controlled diffusion in altitude. The sample levitation is bound to resonance conditions used either for frequency or for acceleration measurements. The chosen vertical geometry solves the limitations imposed by the sample free fall in previous optical clocks using also atomic interferences. This configuration yields multiple-wave interferences enabling levitation and enhancing the measurement sensitivity. This setup, analogous to an atomic resonator in momentum space, constitutes an attractive alternative to existing atomic clocks and gravimeters.Comment: 5 pages, 4 figures.Final versio

    Reforming the international system of units: On our way to redefine the base units solely from fundamental constants and beyond

    Full text link
    Our purpose is to offer a logical analysis of the system of units and to explore possible paths towards a consistent and unified system with an original perspective. The path taken here builds on the fact that, thanks to optical or matter-wave interferometry, any measurement can be reduced to a dimensionless phase measurement and we follow this simple guiding line. We finally show how one could progress even further on the path of a synthetic framework for fundamental metrology based upon pure geometry in five dimensions

    The theory of quantum levitators

    Full text link
    We develop a unified theory for clocks and gravimeters using the interferences of multiple atomic waves put in levitation by traveling light pulses. Inspired by optical methods, we exhibit a propagation invariant, which enables to derive analytically the wave function of the sample scattering on the light pulse sequence. A complete characterization of the device sensitivity with respect to frequency or to acceleration measurements is obtained. These results agree with previous numerical simulations and confirm the conjecture of sensitivity improvement through multiple atomic wave interferences. A realistic experimental implementation for such clock architecture is discussed.Comment: 11 pages, 6 Figures. Minor typos corrected. Final versio

    6-axis inertial sensor using cold-atom interferometry

    Full text link
    We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are successively applied in three orthogonal directions leading to the measurement of the three axis of rotation and acceleration. In this purpose, we introduce a new atom gyroscope using a butterfly geometry. We discuss the present sensitivity and the possible improvements.Comment: submitted to PR

    Does an atom interferometer test the gravitational redshift at the Compton frequency ?

    Full text link
    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, M\"uller, Peters and Chu [Nature {\bf 463}, 926-929 (2010)] argued that atom interferometers also provide a very accurate test of the gravitational redshift when considering the atom as a clock operating at the Compton frequency associated with the rest mass. We analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of "Compton phases" between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been proposed to date, we conclude that the interpretation of atom interferometers as testing the gravitational redshift is unsound.Comment: 26 pages. Modified version to appear in Classical and Quantum Gravit

    Exact phase shifts for atom interferometry

    Get PDF
    In the case of an external Hamiltonian at most quadratic in position and momentum operators, we use the ABCD formulation of atom optics to establish an exact analytical phase shift expression for atom interferometers with arbitrary spatial or temporal beam splitter configurations. This result is expressed in terms of coordinates and momenta of the wave packet centers at the interaction vertices only

    THE "FREELY" FALLING TWO-LEVEL ATOM IN A RUNNING LASER WAVE

    Get PDF
    The time evolution of a two-level atom which is simultaneously exposed to the field of a running laser wave and a homogeneous gravitational field is studied. The result of the coupled dynamics of internal transitions and center-of-mass motion is worked out exactly. Neglecting spontaneous emission and performing the rotating wave approximation we derive the complete time evolution operator in an algebraical way by using commutation relations. The result is discussed with respect to the physical implications. In particular the long time and short time behaviour is physically analyzed in detail. The breakdown of the Magnus perturbation expansion is shown.Comment: 14 Pages, Late

    Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy

    Full text link
    In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.Comment: 22 pages, 11 figure
    • 

    corecore