11 research outputs found

    A maternal high-fat diet during pregnancy and lactation induced depression-like behavior in offspring and myelin-related changes in the rat prefrontal cortex

    Get PDF
    In accordance with the developmental origins of health and disease, early-life environmental exposures, such as maternal diet, can enhance the probability and gravity of health concerns in their offspring in the future. Over the past few years, compelling evidence has emerged suggesting that prenatal exposure to a maternal high-fat diet (HFD) could trigger neuropsychiatric disorders in the offspring, such as depression. The majority of brain development takes place before birth and during lactation. Nevertheless, our understanding of the impact of HFD on myelination in the offspring’s brain during both gestation and lactation remains limited. In the present study, we investigated the effects of maternal HFD (60% energy from fat) on depressive-like and myelin-related changes in adolescent and adult rat offspring. Maternal HFD increased immobility time during the forced swimming test in both adolescent and adult offspring. Correspondingly, the depressive-like phenotype in offspring correlated with dysregulation of several genes and proteins in the prefrontal cortex, especially of myelin-oligodendrocyte glycoprotein (MOG), myelin and lymphocyte protein (MAL), 2â€Č,3â€Č-cyclic-nucleotide 3â€Č-phosphodiesterase (CNPase), kallikrein 6, and transferrin in male offspring, as well as of MOG and kallikrein 6 in female offspring, which persist even into adulthood. Maternal HFD also induced long-lasting adaptations manifested by the reduction of immature and mature oligodendrocytes in the prefrontal cortex in adult offspring. In summary, maternal HFD-induced changes in myelin-related genes are correlated with depressive-like behavior in adolescent offspring, which persists even to adulthood

    Glucocorticoid-regulated kinase CAMKIÎł\gamma in the central amygdala controls anxiety-like behavior in mice

    Get PDF
    The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli

    A Maternal High-Fat Diet during Early Development Provokes Molecular Changes Related to Autism Spectrum Disorder in the Rat Offspring Brain

    No full text
    Autism spectrum disorder (ASD) is a disruptive neurodevelopmental disorder manifested by abnormal social interactions, communication, emotional circuits, and repetitive behaviors and is more often diagnosed in boys than in girls. It is postulated that ASD is caused by a complex interaction between genetic and environmental factors. Epigenetics provides a mechanistic link between exposure to an unbalanced maternal diet and persistent modifications in gene expression levels that can lead to phenotype changes in the offspring. To better understand the impact of the early development environment on the risk of ASD in offspring, we assessed the effect of maternal high-fat (HFD), high-carbohydrate, and mixed diets on molecular changes in adolescent and young adult offspring frontal cortex and hippocampus. Our results showed that maternal HFD significantly altered the expression of 48 ASD-related genes in the frontal cortex of male offspring. Moreover, exposure to maternal HFD led to sex- and age-dependent changes in the protein levels of ANKRD11, EIF4E, NF1, SETD1B, SHANK1 and TAOK2, as well as differences in DNA methylation levels in the frontal cortex and hippocampus of the offspring. Taken together, it was concluded that a maternal HFD during pregnancy and lactation periods can lead to abnormal brain development within the transcription and translation of ASD-related genes mainly in male offspring

    Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes

    No full text
    Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression

    CB2 agonism controls pain and subchondral bone degeneration induced by mono-iodoacetate: Implications GPCR functional bias and tolerance development

    No full text
    Background and purpose: The endocannabinoid system became a promising target for osteoarthritis (OA) treatment. Functional selectivity of cannabinoids may increase their beneficial properties while reducing side effects. The aim of the present study was to evaluate the analgesic potential of two functionally biased CB2 agonists in different treatment regimens to propose the best pharmacological approach for OA management. Experimental approach: Two functionally selective CB2 agonists were administered i.p. – JWH133 (cAMP biased) and GW833972A (ÎČ-arrestin biased), in a chemically induced model of OA in rats. The drugs were tested in acute and chronic treatment regimens. Analgesic effects were assessed by pressure application measurement and kinetic weight bearing. X-ray microtomography was used for the morphometric analysis of the femur’s subchondral bone tissue. Underlying biochemical changes were analysed via RT-qPCR. Key results: Dose-response studies established the effective dose for both JWH133 and GW833972A. In chronic treatment paradigms, JWH133 was able to elicit analgesia throughout the course of the experiment, whereas GW833972A lost its efficacy after 2 days of treatment. Later studies revealed improvement in subchondral bone architecture and decrement of matrix metalloproteinases and proinflammatory factors expression following JWH133 chronic treatment. Conclusion and implications: Data presents analgesic and disease-modifying potential of CB2 agonists in OA treatment. Moreover, the study revealed more pronounced tolerance development for analgesic effects of the ÎČ-arrestin biased CB2 agonist GW833972A. These results provide a better understanding of the molecular underpinnings of the anti-nociceptive potential of CB2 agonists and may improve drug development processes for any cannabinoid-based chronic pain therapy

    A Patient with Corticobasal Syndrome and Progressive Non-Fluent Aphasia (CBS-PNFA), with Variants in ATP7B, SETX, SORL1, and FOXP1 Genes

    No full text
    Our aim was to analyze the phenotypic-genetic correlations in a patient diagnosed with early onset corticobasal syndrome with progressive non-fluent aphasia (CBS-PNFA), characterized by predominant apraxia of speech, accompanied by prominent right-sided upper-limb limb-kinetic apraxia, alien limb phenomenon, synkinesis, myoclonus, mild cortical sensory loss, and right-sided hemispatial neglect. Whole-exome sequencing (WES) identified rare single heterozygous variants in ATP7B (c.3207C>A), SORL1 (c.352G>A), SETX (c.2385_2387delAAA), and FOXP1 (c.1762G>A) genes. The functional analysis revealed that the deletion in the SETX gene changed the splicing pattern, which was accompanied by lower SETX mRNA levels in the patient’s fibroblasts, suggesting loss-of-function as the underlying mechanism. In addition, the patient’s fibroblasts demonstrated altered mitochondrial architecture with decreased connectivity, compared to the control individuals. This is the first association of the CBS-PNFA phenotype with the most common ATP7B pathogenic variant p.H1069Q, previously linked to Wilson’s disease, and early onset Parkinson’s disease. This study expands the complex clinical spectrum related to variants in well-known disease genes, such as ATP7B, SORL1, SETX, and FOXP1, corroborating the hypothesis of oligogenic inheritance. To date, the FOXP1 gene has been linked exclusively to neurodevelopmental speech disorders, while our study highlights its possible relevance for adult-onset progressive apraxia of speech, which guarantees further study

    Two Rare Variants in PLAU and BACE1 Genes—Do They Contribute to Semantic Dementia Clinical Phenotype?

    No full text
    We have performed whole-genome sequencing to identify the genetic variants potentially contributing to the early-onset semantic dementia phenotype in a patient with family history of dementia and episodic memory deficit accompanied with profound semantic loss. Only very rare variants of unknown significance (VUS) have been identified: a nonsense variant c.366C>A/p.Cys122* in plasminogen activator, urokinase (PLAU) and a missense variant c.944C>T/p.Thr315Met in ÎČ-site APP-cleaving enzyme 1 (BACE1)—along with known disease-modifying variants of moderate penetrance. Patient-derived fibroblasts showed reduced PLAU and elevated BACE1 mRNA and protein levels compared to control fibroblasts. Successful rescue of PLAU mRNA levels by nonsense-mediated mRNA decay (NMD) inhibitor (puromycin) confirmed NMD as the underlying mechanism. This is the first report of the PLAU variant with the confirmed haploinsufficiency, associated with semantic dementia phenotype. Our results suggest that rare variants in the PLAU and BACE1 genes should be considered in future studies on early-onset dementias

    Glucocorticoid-Regulated Kinase CAMKIγ in the Central Amygdala Controls Anxiety-like Behavior in Mice

    Get PDF
    The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli
    corecore