79 research outputs found

    Pomacea canaliculata ampullar proteome: A nematode-based bio-pesticide induces changes in metabolic and stress-related pathways

    Get PDF
    Pomacea canaliculata is a freshwater gastropod known for being both a highly invasive species and one of the possible intermediate hosts of the mammalian parasite Angiostrongylus cantonensis. With the aim of providing new information concerning P. canaliculata biology and adaptability, the first proteome of the ampulla, i.e., a small organ associated with the circulatory system and known as a reservoir of nitrogen-containing compounds, was obtained. The ampullar proteome was derived from ampullae of control snails or after exposure to a nematode-based molluscicide, known for killing snails in a dose-and temperature-dependent fashion. Proteome analysis revealed that the composition of connective ampulla walls, cell metabolism and oxidative stress response were affected by the biopesticide. Ultrastructural investigations have highlighted the presence of rhogocytes within the ampullar walls, as it has been reported for other organs containing nitrogen storage tissue. Collected data suggested that the ampulla may belong to a network of organs involved in controlling and facing oxidative stress in different situations. The response against the nematode-based molluscicide recalled the response set up during early arousal after aestivation and hibernation, thus encouraging the hypothesis that metabolic pathways and antioxidant defences promoting amphibiousness could also prove useful in facing other challenges stimulating an oxidative stress response, e.g., immune challenges or biocide exposure. Targeting the oxidative stress resistance of P. canaliculata may prove helpful for increasing its susceptibility to bio-pesticides and may help the sustainable control of this pest’s diffusion

    Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts

    Get PDF
    Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the “arena” where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts’ pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification

    From Clinical Diagnosis to the Discovery of Multigene Rare Sequence Variants in Pseudoxanthoma elasticum: A Case Report

    Get PDF
    Pseudoxanthoma elasticum (PXE) is a rare autosomal recessive disease clinically characterised by early cutaneous alterations, and by late clinically relevant ocular, and cardiovascular manifestations. ABCC6 genetic tests are used to confirm clinical PXE diagnosis, but this strategy may be rather challenging when only one ABCC6 pathogenic variant is found. A next-generation sequencing approach focusing on 362 genes related to the calcification process and/or to inherited retinal diseases was performed on a patient with clinical PXE diagnosis (skin papules and laxity, angioid streaks, and atrophy) who was carrier of only one ABCC6 rare sequence variant. Beside ABCC6, several rare sequence variants were detected which can contribute either to the occurrence of calcification (GGCX and SERPINF1 genes) and/or to ophthalmological manifestations (ABCA4, AGBL5, CLUAP1, and KCNV2 genes). This wide-spectrum analysis approach facilitates the identification of rare variants possibly involved in PXE, thus avoiding invasive skin biopsy as well as expensive and time-consuming diagnostic odyssey and allows to broaden and to deepen the knowledge on this complex rare disease and to improve patients' counselling, also with a future perspective of personalised medicine

    Phenotypic Features and Genetic Findings in a Cohort of Italian Pseudoxanthoma Elasticum Patients and Update of the Ophthalmologic Evaluation Score

    Get PDF
    Background: Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification genetic disease mainly caused by ABCC6 rare sequence variants. The clinical phenotype is characterized by typical dermatological, ophthalmological and cardiovascular manifestations, whose frequency and severity are differently reported in the literature. Methods: A retrospective study was performed on 377 PXE patients of Italian origin, clinically evaluated according to the Phenodex Index, who underwent ABCC6 biomolecular analyses. Moreover, 53 PXE patients were further characterized by in-depth ophthalmological examinations. Results: A total of 117 different ABCC6 rare sequence variants were detected as being spread through the whole gene. The severity of the clinical phenotype was dependent on age, but it was not influenced by gender or by the type of sequence variants. In-depth ophthalmological examinations focused on the incidences of coquille d'oeuf, comet lesions, pattern dystrophy-like lesions, optic disk drusen and posterior-pole atrophy. Conclusion: Given the large number of patients analyzed, we were able to better evaluate the occurrence of less frequent alterations (e.g., stroke, myocardial infarction, nephrolithiasis). A more detailed description of ophthalmological abnormalities allowed us to stratify patients and better evaluate disease progression, thus suggesting a further update of the PXE score system

    Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions.

    Get PDF
    Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors

    Impact of glucocorticoid on a cellular model of parkinson’s disease: Oxidative stress and mitochondrial function

    Get PDF
    Stress seems to contribute to the neuropathology of Parkinson’s disease (PD), possibly by dysregulation of the hypothalamic–pituitary–adrenal axis. Oxidative distress and mitochondrial dysfunction are key factors involved in the pathophysiology of PD and neuronal glucocorticoid-induced toxicity. Animal PD models have been generated to study the effects of hormonal stress, but no in vitro model has yet been developed. Our aim was to examine the impact of corticosterone (CORT) administration on a dopaminergic neuronal cell model of PD induced by the neurotoxin MPP+, as a new combined PD model based on the marker of endocrine response to stress, CORT, and oxidative-mitochondrial damage. We determined the impact of CORT, MPP+ and their co-incubation on reactive oxygen species production (O2−• ), oxidative stress cellular markers (advanced-oxidation protein products and total antioxidant status), mitochondrial function (mitochondrial membrane potential and mitochondrial oxygen consumption rate) and neurodegeneration (Fluoro-Jade staining). Accordingly, the administration of MPP+ or CORT individually led to cell damage compared to controls (p < 0.05), as determined by several methods, whereas their co-incubation produced strong cell damage (p < 0.05). The combined model described here could be appropriate for investigating neuropathological hallmarks and for evaluating potential new therapeutic tools for PD patients suffering mild to moderate emotional stress

    IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids

    Get PDF
    Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.)
    corecore