1,046 research outputs found

    A new species of nastus from new guinea

    Get PDF
    This article does not have an abstract

    Uncovering Yield Parity: A New Insight into the UIP Puzzle through the Stationarity of Long Maturity Forward Rates

    Get PDF
    Results and models of this paper are based on a strikingly new empirical observation: long maturity forward rates between bilateral currency pairs of the US, Germany, UK, and Switzerland are stationary. Based on this result, we suggest a new explanation for the UIP-puzzle maintaining rational expectations and risk neutrality. The model builds on the interaction of foreign exchange and fixed income markets. Ex ante short run and long run UIP and the EHTS is assumed. We show that ex post shocks to the term structure could explain the behavior of the nominal exchange rate including its volatility and the failure of ex post short UIP regressions. We present evidence on ex post validity of long run UIP and strikingly new evidence on the stationarity of the long forward exchange rates of major currencies. We set up, calibrate and simulate a stylized model that well captures the observed properties of spot exchange rates and UIP regressions of major currencies. We define the notion of yield parity and test its empirical performance for monthly series of major currencies with favorable resultsEHTS, forward discount bias, stationarity of long maturity forward rates, UIP, yield parity

    To validate aeluropodeae nevski

    Get PDF
    This article does not have an abstract

    Tunable plasmonic reflection by bound 1D electron states in a 2D Dirac metal

    Full text link
    We show that surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by line-like perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.Comment: 14 pages, 12 figures, submitted to PR

    Plasmon reflections by topological electronic boundaries in bilayer graphene

    Full text link
    Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local ac conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contain additional confined bands which produce a structure-specific contrast of the local conductivity. The calculated plasmonic interference profiles are in quantitative agreement with our experiments.Comment: 14 pages, 5 figure

    Nanoplasmonic Phenomena at Electronic Boundaries in Graphene

    Get PDF
    We review recent discoveries of the intriguing plasmonic phenomena at a variety of electronic boundaries (EBs) in graphene including a line of charges in graphene induced by a carbon nanotube gate, grain boundaries in chemical vapor deposited graphene films, an interface between graphene and moiré patterned graphene, an interface between graphene and bilayer graphene, and others. All these and other EBs cause plasmonic impedance mismatch at the two sides of the boundaries. Manifestations of this effect include plasmonic fringes that stem from plasmon reflections and interference. Quantitative analysis and modeling of these plasmonic fringes uncovered intriguing properties and underlying physics of the EBs. Potential plasmonic applications associated with these EBs are also briefly discussed

    Effective connectivity reveals strategy differences in an expert calculator

    Get PDF
    Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of “cortical hubs” supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material

    Has the phasing out of stavudine in accordance with changes in WHO guidelines led to a decrease in single-drug substitutions in first-line antiretroviral therapy for HIV in sub-Saharan Africa?

    Get PDF
    This version is the Accepted Manuscript and is published in final edited form as: AIDS. 2017 January 02; 31(1): 147–157. doi:10.1097/QAD.0000000000001307OBJECTIVE: We assessed the relationship between phasing out stavudine in first-line antiretroviral therapy (ART) in accordance with WHO 2010 policy and single-drug substitutions (SDS) (substituting the nucleoside reverse transcriptase inhibitor in first-line ART) in sub-Saharan Africa. DESIGN: Prospective cohort analysis (International epidemiological Databases to Evaluate AIDS-Multiregional) including ART-naive, HIV-infected patients aged at least 16 years, initiating ART between January 2005 and December 2012. Before April 2010 (July 2007 in Zambia) national guidelines called for patients to initiate stavudine-based or zidovudine-based regimen, whereas thereafter tenofovir or zidovudine replaced stavudine in first-line ART. METHODS: We evaluated the frequency of stavudine use and SDS by calendar year 2004-2014. Competing risk regression was used to assess the association between nucleoside reverse transcriptase inhibitor use and SDS in the first 24 months on ART. RESULTS: In all, 33 441 (8.9%; 95% confience interval 8.7-8.9%) SDS occurred among 377 656 patients in the first 24 months on ART, close to 40% of which were amongst patients on stavudine. The decrease in SDS corresponded with the phasing out of stavudine. Competing risks regression models showed that patients on tenofovir were 20-95% less likely to require a SDS than patients on stavudine, whereas patients on zidovudine had a 75-85% decrease in the hazards of SDS when compared to stavudine. CONCLUSION: The decline in SDS in the first 24 months on treatment appears to be associated with phasing out stavudine for zidovudine or tenofovir in first-line ART in our study. Further efforts to decrease the cost of tenofovir and zidovudine for use in this setting is warranted to substitute all patients still receiving stavudine

    2+1 Dimensional Georgi-Glashow Instantons in Weyl Gauge

    Full text link
    Semiclassical instanton solutions in the 3D SU(2) Georgi-Glashow model are transformed into the Weyl gauge. This illustrates the tunneling interpretation of these instantons and provides a smooth regularization of the singular unitary gauge. The 3D Georgi-Glashow model has both instanton and sphaleron solutions, in contrast to 3D Yang-Mills theory which has neither, and 4D Yang-Mills theory which has instantons but no sphaleron, and 4D electroweak theory which has a sphaleron but no instantons. We also discuss the spectral flow picture of fundamental fermions in a Georgi-Glashow instanton background.Comment: 22 pages, 8 figures, revtex4; v2 - references and comments adde
    corecore