15 research outputs found

    Bulk supercrystalline ceramic-organic nanocomposites: New processing routines and insights on the mechanical behavior

    Get PDF
    In the strive to produce nature-inspired hierarchical materials with an enhanced combination of mechanical properties, supercrystalline ceramic-organic nanocomposites have been produced in bulk form and characterized from a variety of perspectives. Through an interdisciplinary collaboration at the crossroad between materials science, chemistry and mechanical engineering, a bottom-up approach has been designed. It consists of a sequence of self-assembly, pressing and heat treatment, and it leads to macroscopic poly-supercrystalline materials with exceptional mechanical properties and behavior. The crosslinking of the organic phase induced by the heat treatment does not only increase the materials’ stiffness, hardness and strength (elastic modulus up to 70 GPa, hardness up to 5 GPa and bending strength up to 630 MPa), but alters also their constitutive response. Fracture toughness values higher than theoretical predictions have emerged (~ 1 MPa·m1/2), implying the presence of extrinsic toughening mechanisms, such as the crack-path deviation observed at indents’ corners. Ex-situ nanoindentation and in-situ SAXS/microcompression studies also suggest the possibility for supercrystalline materials to accommodate compressibility and plastic-like deformation. Defects analogous to the ones typically observed in crystalline lattices, such as stacking faults, dislocations and slip bands, are detected at the superlattice scale (even if one order of magnitude larger than the atomic one, and with interactions among the nano-building blocks controlled by the organic phase). Correlations between defects, processing and mechanical properties have been drawn by adapting the classic theories of mechanical behavior of materials. These same materials are additionally being used as bricks for the development of novel hierarchical composites, via additive manufacturing or fluidized bed techniques. Please click Additional Files below to see the full abstract

    Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles

    Get PDF
    Biomaterials often display outstanding combinations of mechanical properties thanks to their hierarchical structuring, which occurs through a dynamically and biologically controlled growth and self-assembly of their main constituents, typically mineral and protein. However, it is still challenging to obtain this ordered multiscale structural organization in synthetic 3D-nanocomposite materials. Herein, we report a new bottom-up approach for the synthesis of macroscale hierarchical nanocomposite materials in a single step. By controlling the content of organic phase during the self-assembly of monodisperse organically-modified nanoparticles (iron oxide with oleyl phosphate), either purely supercrystalline or hierarchically structured supercrystalline nanocomposite materials are obtained. Beyond a critical concentration of organic phase, a hierarchical material is consistently formed. In such a hierarchical material, individual organically-modified ceramic nanoparticles (Level 0) self-assemble into supercrystals in face-centered cubic superlattices (Level 1), which in turn form granules of up to hundreds of micrometers (Level 2). These micrometric granules are the constituents of the final mm-sized material. This approach demonstrates that the local concentration of organic phase and nano-building blocks during self-assembly controls the final material's microstructure, and thus enables the fine-tuning of inorganic-organic nanocomposites' mechanical behavior, paving the way towards the design of novel high-performance structural materials.The authors gratefully acknowledge the financial support from the German Research Foundation (DFG) via the SFB 986-M3, projects A1, A6, Z2, and Z3. We thank Dr. F. Beckmann (Helmholtz-Zentrum Geesthacht, Geesthacht, Germany) for scanning the sample with the technique SRÂľCT and for reconstructing the slices, and Dr. I. Greving (Helmholtz-Zentrum Geesthacht, Geesthacht, Germany) for her inputs on SRÂľCT. Dr. F. Brun (National Institute of Nuclear Physics, Trieste, Italy) is acknowledged for the discussion regarding quantitative analysis using Pore3d

    Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: Development of mechanically robust, bulk superparamagnetic materials

    Get PDF
    Nanostructured iron-oxide based materials with tailored mechanical and magnetic behavior are produced in bulk form. By applying ultra-fast heating routines via spark plasma sintering (SPS) to supercrystalline pellets, materials with an enhanced combination of elastic modulus, hardness and saturation magnetization are achieved. Supercrystallinity-namely the arrangement of the constituent nanoparticles into periodic structures-is achieved through self-assembly of the organically-functionalized iron oxide nanoparticles. The optimization of the following SPS regime allows the control of organics' removal, necking, iron oxide phase transformations and nano-grain size retention, and thus the fine-tuning of both mechanical properties and magnetic response, up until the production of bulk mm-size superparamagnetic materials.Deusche Forschungsgemeinschaft (DFG

    Mapping the Mechanical Properties of Hierarchical Supercrystalline Ceramic-Organic Nanocomposites

    No full text
    Multiscale ceramic-organic supercrystalline nanocomposites with two levels of hierarchy have been developed via self-assembly with tailored content of the organic phase. These nanocomposites consist of organically functionalized ceramic nanoparticles forming supercrystalline micron-sized grains, which are in turn embedded in an organic-rich matrix. By applying an additional heat treatment step at mild temperatures (250–350 °C), the mechanical properties of the hierarchical nanocomposites are here enhanced. The heat treatment leads to partial removal and crosslinking of the organic phase, minimizing the volume occupied by the nanocomposites’ soft phase and triggering the formation of covalent bonds through the organic ligands interfacing the ceramic nanoparticles. Elastic modulus and hardness up to 45 and 2.5 GPa are attained, while the hierarchical microstructure is preserved. The presence of an organic phase between the supercrystalline grains provides a toughening effect, by curbing indentation-induced cracks. A mapping of the nanocomposites’ mechanical properties reveals the presence of multiple microstructural features and how they evolve with heat treatment temperature. A comparison with non-hierarchical, homogeneous supercrystalline nanocomposites with lower organic content confirms how the hierarchy-inducing organic excess results in toughening, while maintaining the beneficial effects of crosslinking on the materials’ stiffness and hardness

    Nanoindentation of Supercrystalline Nanocomposites: Linear Relationship Between Elastic Modulus and Hardness

    Get PDF
    Supercrystalline nanocomposites (SCNCs) are a new category of nanostructured materials, with organically functionalized nanoparticles assembled into periodic structures, reminiscent of atomic crystals. Thanks to this nanoarchitecture, SCNCs show great promise for functional applications, and understanding and controlling their mechanical properties becomes key. Nanoindentation is a powerful tool to assess the mechanical behavior of virtually any material, and it is particularly suitable for studies on nanostructured materials. While investigating SCNCs in nanoindentation, a linear proportionality has emerged between elastic modulus and hardness. This is not uncommon in nanoindentation studies, and here we compare and contrast the behavior of SCNCs with that of other material categories that share some of the key features of SCNCs: mineral-rich biocomposites (where mineral building blocks are packed into a protein-interfaced network), ultrafine grained materials (where the characteristic nano-grain sizes are analogous to those of the SCNC building blocks), and face-centered cubic atomic crystals (which share the typical SCNC periodic structure). A strong analogy emerges with biomaterials, both in terms of the hardness/elastic modulus relationship, and of the correlation between this ratio and the dissipative mechanisms occurring upon material deformation. Insights into the suitability of SCNCs as building blocks of the next-generation hierarchical materials are drawn

    Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites

    No full text
    Bulk poly-supercrystalline ceramic-organic nanocomposites were produced and characterized with a nanoindentation-based study. These nanocomposites were processed using two different routines, to compare their properties with and without crosslinking the organic ligands interfacing the ceramic nanoparticles. Together with the expected material strengthening induced by crosslinking, a distinct response emerges when using Berkovich and cube-corner indenters. The supercrystalline materials are prone to compaction, cracking and chipping phenomena that become more severe when a sharper tip is employed, implying that a Berkovich indenter is more suitable for the evaluation of elastic modulus and hardness. The cube-corner tip, on the other hand, is employed for the investigation of fracture toughness, comparing two methods and multiple models available from the literature. The fracture toughness outcomes suggest that cracks evolve with a quarter-penny shaped profile at the indent's corners, and that extrinsic toughening mechanisms, such as plastic-like deformation and crack deflection, play a significant role

    Nanoindentation creep of supercrystalline nanocomposites

    No full text
    Supercrystalline nanocomposites (SCNCs) are inorganic-organic hybrid materials with a unique periodic nanostructure, and thus they have been gaining growing attention for their intriguing functional properties and parallelisms with hierarchical biomaterials. Their mechanical behavior remains, however, poorly understood, even though its understanding and control are important to allow SCNCs’ implementation into devices. An important aspect that has not been tackled yet is their time-dependent deformation behavior, which is nevertheless expected to play an important role in materials containing such a distribution of organic phase. Hereby, we report on the creep of ceramic-organic SCNCs with varying degrees of organic crosslinking, as assessed via nanoindentation. Creep strains and their partial recoverability are observed, hinting at the co-presence of viscoelasticity and viscoplasticity, and a clear effect of crosslinking in decreasing the overall material deformability emerges. We rationalize our experimental observations with the analysis of stress exponent and activation volume, resulting in a power-law breakdown behavior and governing deformation mechanisms occurring at the organic sub-nm interfaces scale, as rearrangement of organic ligands. The set of results is reinforced by the evaluation of the strain rate sensitivity via strain rate jump tests, and the assessment of the effect of oscillations during continuous stiffness measurement mode

    Ultra-thin and ultra-strong organic interphase in nanocomposites with supercrystalline particle arrangement : mechanical behavior identification via multiscale numerical modeling

    No full text
    Š 2020 The Authors. A key challenge in the development of inorganic-organic nanocomposites is the mechanical behavior identification of the organic phase. For supercrystalline materials, in which the organic phase ranges down to sub-nm areas, the identification of the organic materials' mechanical properties is however experimentally inaccessible. The supercrystalline nanocomposites investigated here are 3D superlattices of self-assembled iron oxide nanoparticles, surface-functionalized with crosslinked oleic acid ligands. They exhibit the highest reported values of Young's modulus, nanohardness and strength for inorganic-organic nanocomposites. A multiscale numerical modeling approach is developed to identify these properties using supercrystalline representative volume elements, in which the nanoparticles are arranged in a face-centered cubic superlattice and the organic phase is modeled as a thin layer interfacing each particle. A Drucker-Prager-type elastoplastic constitutive law with perfectly plastic yielding is identified as being able to describe the supercrystals' response in nanoindentation accurately. As the nanoparticles behave in a purely elastic manner with very high stiffness, the underlying constitutive law of the organic phase is also identified to be Drucker-Prager-type elastoplastic, with a Young's modulus of 13 GPa and a uniaxial tensile yield stress of 900 MPa, remarkably high values for an organic material, and matching well with experimental and DFT-based estimations. Furthermore, a sensitivity study indicates that small configurational changes within the supercrystalline lattice do not significantly alter the overall stiffness behavior. Multiscale numerical modeling is thus proven to be able to identify the nanomechanical properties of supercrystals, and can ultimately be used to tailor these materials' mechanical behavior starting from superlattice considerations.Deutsche Forschungsgemeinschaft (DFG)Ministry of National Education of the Republic of Turke

    Constitutive and fracture behavior of ultra-strong supercrystalline nanocomposites

    Get PDF
    Supercrystalline nanocomposites are a new class of hybrid and nanostructured materials that can reach exceptional mechanical strength and can be fabricated at low temperatures. Hierarchically arranged, they bridge the gap from the nano- to the macro-scale. Even though their mechanical properties are starting to be characterized, their constitutive behavior is still largely unexplored. Here, the mechanical behavior of supercrystalline nanocomposites of iron oxide nanoparticles, surface-functionalized with oleic acid and oleyl phosphate ligands, is investigated in both bending and compression, with loading-unloading tests. A new bar geometry is implemented to better detect deformation prior to unstable crack propagation, and notched bending bars are tested to evaluate fracture toughness. Micro-mechanical tests result in the values of strength and elastic modulus that are extremely high for supercrystals, reaching record-high numbers in the oleic acid-based nanocomposites, which also show a significant tension-compression asymmetry. The constitutive behavior of both materials is predominantly linear elastic, with some more marked nonlinearities arising in the oleyl phosphate-based nanocomposites. The fracture toughness of both types of nanocomposites, ∼0.3 MPa√m, suggests that extrinsic toughening, associated with both material composition and nanostructure, plays an important role. Fractographic observations reveal analogies with shear and cleavage in atomic crystals. The influence of material composition, nanostructure, and processing method on the mechanical behavior of the nanocomposites is analyzed
    corecore