CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Ultra-thin and ultra-strong organic interphase in nanocomposites with supercrystalline particle arrangement : mechanical behavior identification via multiscale numerical modeling
Authors
Büsra Bor
Berta Domènech Garcia
+4 more
Diletta Giuntini
Mingjing Li
Ingo Scheider
Gerold A. Schneider
Publication date
29 September 2020
Publisher
Elsevier
Doi
Cite
Abstract
© 2020 The Authors. A key challenge in the development of inorganic-organic nanocomposites is the mechanical behavior identification of the organic phase. For supercrystalline materials, in which the organic phase ranges down to sub-nm areas, the identification of the organic materials' mechanical properties is however experimentally inaccessible. The supercrystalline nanocomposites investigated here are 3D superlattices of self-assembled iron oxide nanoparticles, surface-functionalized with crosslinked oleic acid ligands. They exhibit the highest reported values of Young's modulus, nanohardness and strength for inorganic-organic nanocomposites. A multiscale numerical modeling approach is developed to identify these properties using supercrystalline representative volume elements, in which the nanoparticles are arranged in a face-centered cubic superlattice and the organic phase is modeled as a thin layer interfacing each particle. A Drucker-Prager-type elastoplastic constitutive law with perfectly plastic yielding is identified as being able to describe the supercrystals' response in nanoindentation accurately. As the nanoparticles behave in a purely elastic manner with very high stiffness, the underlying constitutive law of the organic phase is also identified to be Drucker-Prager-type elastoplastic, with a Young's modulus of 13 GPa and a uniaxial tensile yield stress of 900 MPa, remarkably high values for an organic material, and matching well with experimental and DFT-based estimations. Furthermore, a sensitivity study indicates that small configurational changes within the supercrystalline lattice do not significantly alter the overall stiffness behavior. Multiscale numerical modeling is thus proven to be able to identify the nanomechanical properties of supercrystals, and can ultimately be used to tailor these materials' mechanical behavior starting from superlattice considerations.Deutsche Forschungsgemeinschaft (DFG)Ministry of National Education of the Republic of Turke
Similar works
Full text
Available Versions
TUHH Open Research (TORE)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:tore.tuhh.de:11420/7169
Last time updated on 14/09/2020