140 research outputs found

    Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect

    Full text link
    Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by \cite{arjovsky2017towards}, who also propose an alternative direction to avoid the caveats in the minmax two-player training of GANs. The corresponding algorithm, called Wasserstein GAN (WGAN), hinges on the 1-Lipschitz continuity of the discriminator. In this paper, we propose a novel approach to enforcing the Lipschitz continuity in the training procedure of WGANs. Our approach seamlessly connects WGAN with one of the recent semi-supervised learning methods. As a result, it gives rise to not only better photo-realistic samples than the previous methods but also state-of-the-art semi-supervised learning results. In particular, our approach gives rise to the inception score of more than 5.0 with only 1,000 CIFAR-10 images and is the first that exceeds the accuracy of 90% on the CIFAR-10 dataset using only 4,000 labeled images, to the best of our knowledge.Comment: Accepted as a conference paper in International Conference on Learning Representation(ICLR). Xiang Wei and Boqing Gong contributed equally in this wor

    On Discrete Prompt Optimization for Diffusion Models

    Full text link
    This paper introduces the first gradient-based framework for prompt optimization in text-to-image diffusion models. We formulate prompt engineering as a discrete optimization problem over the language space. Two major challenges arise in efficiently finding a solution to this problem: (1) Enormous Domain Space: Setting the domain to the entire language space poses significant difficulty to the optimization process. (2) Text Gradient: Efficiently computing the text gradient is challenging, as it requires backpropagating through the inference steps of the diffusion model and a non-differentiable embedding lookup table. Beyond the problem formulation, our main technical contributions lie in solving the above challenges. First, we design a family of dynamically generated compact subspaces comprised of only the most relevant words to user input, substantially restricting the domain space. Second, we introduce "Shortcut Text Gradient" -- an effective replacement for the text gradient that can be obtained with constant memory and runtime. Empirical evaluation on prompts collected from diverse sources (DiffusionDB, ChatGPT, COCO) suggests that our method can discover prompts that substantially improve (prompt enhancement) or destroy (adversarial attack) the faithfulness of images generated by the text-to-image diffusion model.Comment: ICML 2024. Code available at https://github.com/ruocwang/dpo-diffusio

    Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect

    Full text link
    Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by \cite{arjovsky2017towards}, who also propose an alternative direction to avoid the caveats in the minmax two-player training of GANs. The corresponding algorithm, called Wasserstein GAN (WGAN), hinges on the 1-Lipschitz continuity of the discriminator. In this paper, we propose a novel approach to enforcing the Lipschitz continuity in the training procedure of WGANs. Our approach seamlessly connects WGAN with one of the recent semi-supervised learning methods. As a result, it gives rise to not only better photo-realistic samples than the previous methods but also state-of-the-art semi-supervised learning results. In particular, our approach gives rise to the inception score of more than 5.0 with only 1,000 CIFAR-10 images and is the first that exceeds the accuracy of 90% on the CIFAR-10 dataset using only 4,000 labeled images, to the best of our knowledge.Comment: Accepted as a conference paper in International Conference on Learning Representation(ICLR). Xiang Wei and Boqing Gong contributed equally in this wor

    Video Timeline Modeling For News Story Understanding

    Full text link
    In this paper, we present a novel problem, namely video timeline modeling. Our objective is to create a video-associated timeline from a set of videos related to a specific topic, thereby facilitating the content and structure understanding of the story being told. This problem has significant potential in various real-world applications, such as news story summarization. To bootstrap research in this area, we curate a realistic benchmark dataset, YouTube-News-Timeline, consisting of over 1212k timelines and 300300k YouTube news videos. Additionally, we propose a set of quantitative metrics as the protocol to comprehensively evaluate and compare methodologies. With such a testbed, we further develop and benchmark exploratory deep learning approaches to tackle this problem. We anticipate that this exploratory work will pave the way for further research in video timeline modeling. The assets are available via https://github.com/google-research/google-research/tree/master/video_timeline_modeling.Comment: Accepted as a spotlight by NeurIPS 2023, Track on Datasets and Benchmark
    corecore