In this paper, we present a novel problem, namely video timeline modeling.
Our objective is to create a video-associated timeline from a set of videos
related to a specific topic, thereby facilitating the content and structure
understanding of the story being told. This problem has significant potential
in various real-world applications, such as news story summarization. To
bootstrap research in this area, we curate a realistic benchmark dataset,
YouTube-News-Timeline, consisting of over 12k timelines and 300k YouTube
news videos. Additionally, we propose a set of quantitative metrics as the
protocol to comprehensively evaluate and compare methodologies. With such a
testbed, we further develop and benchmark exploratory deep learning approaches
to tackle this problem. We anticipate that this exploratory work will pave the
way for further research in video timeline modeling. The assets are available
via
https://github.com/google-research/google-research/tree/master/video_timeline_modeling.Comment: Accepted as a spotlight by NeurIPS 2023, Track on Datasets and
Benchmark