398 research outputs found

    Magnetic-Surface Quality in Nonaxisymmetric Plasma Equilibria

    No full text

    Vol. 20, No. 4 (2000)

    Get PDF

    State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

    Get PDF
    Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ~ 1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let

    Stability of bootstrap current‐driven magnetic islands in stellarators

    Full text link
    The stability of magnetic island producing perturbations due to fluctuations in the bootstrap current in stellarator configuration is examined. The stability criterion depends on the sign of the derivative of the rotational transform, the pressure gradient and the direction of the equilibrium bootstrap current which is determined by the structure of {parallel}B{parallel}. It is found that quasi-helically symmetric stellarator configurations with p{prime}/{tau}{prime} < 0 are unstable to the formation of bootstrap current driven magnetic islands. The stability of conventional stellarator configurations depends upon the field structure

    Comparison of Theory and Experiment for a One-Atom Laser in a Regime of Strong Coupling

    Get PDF
    Our recent paper reports the experimental realization of a one-atom laser in a regime of strong coupling (Ref. [1]). Here we provide the supporting theoretical analysis relevant to the operating regime of our experiment. By way of a simplified four-state model, we investigate the passage from the domain of conventional laser theory into the regime of strong coupling for a single intracavity atom pumped by coherent external fields. The four-state model is also employed to exhibit the vacuum-Rabi splitting and to calculate the optical spectrum. We next extend this model to incorporate the relevant Zeeman hyperfine states as well as a simple description of the pumping processes in the presence of polarization gradients and atomic motion. This extended model is employed to make quantitative comparisons with the measurements of Ref. [1] for the intracavity photon number versus pump strength and for the photon statistics as expressed by the intensity correlation function g2(tau).Comment: 19 pages, 14 figures. Added sections on: scaling properties, vacum-Rabi splitting, and optical spectru

    Quantum to Classical Transition in a Single-Ion Laser

    Full text link
    Stimulated emission of photons from a large number of atoms into the mode of a strong light field is the principle mechanism for lasing in "classical" lasers. The onset of lasing is marked by a threshold which can be characterised by a sharp increase in photon flux as a function of external pumping strength. The same is not necessarily true for the fundamental building block of a laser: a single trapped atom interacting with a single optical radiation mode. It has been shown that such a "quantum" laser can exhibit thresholdless lasing in the regime of strong coupling between atom and radiation field. However, although theoretically predicted, a threshold at the single-atom level could not be experimentally observed so far. Here, we demonstrate and characterise a single-atom laser with and without threshold behaviour by changing the strength of atom-light field coupling. We observe the establishment of a laser threshold through the accumulation of photons in the optical mode even for a mean photon number substantially lower than for the classical case. Furthermore, self-quenching occurs for very strong external pumping and constitutes an intrinsic limitation of single-atom lasers. Moreover, we find that the statistical properties of the emitted light can be adjusted for weak external pumping, from the quantum to the classical domain. Our observations mark an important step towards fundamental understanding of laser operation in the few-atom limit including systems based on semiconductor quantum dots or molecules.Comment: 19 pages, 4 figures, 10 pages supplement, accepted by Nature Physic

    Nordström gravity coupled to point particles in ( 1

    Full text link

    The Relation of Edge Confinement to Global Confinement in ASDEX Upgrade

    No full text

    Raman spectroscopy of a single ion coupled to a high-finesse cavity

    Full text link
    We describe an ion-based cavity-QED system in which the internal dynamics of an atom is coupled to the modes of an optical cavity by vacuum-stimulated Raman transitions. We observe Raman spectra for different excitation polarizations and find quantitative agreement with theoretical simulations. Residual motion of the ion introduces motional sidebands in the Raman spectrum and leads to ion delocalization. The system offers prospects for cavity-assisted resolved-sideband ground-state cooling and coherent manipulation of ions and photons.Comment: 8 pages, 6 figure
    corecore