109 research outputs found

    Comparative Genomic Analyses of the Moraxella catarrhalis Serosensitive and Seroresistant Lineages Demonstrate Their Independent Evolution

    Get PDF
    Contains fulltext : 172169.pdf (publisher's version ) (Open Access)The bacterial speciesMoraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ss-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored

    Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates

    Get PDF
    Contains fulltext : 97744.pdf (publisher's version ) (Open Access)BACKGROUND: M. catarrhalis is a gram-negative, gamma-proteobacterium and an opportunistic human pathogen associated with otitis media (OM) and exacerbations of chronic obstructive pulmonary disease (COPD). With direct and indirect costs for treating these conditions annually exceeding $33 billion in the United States alone, and nearly ubiquitous resistance to beta-lactam antibiotics among M. catarrhalis clinical isolates, a greater understanding of this pathogen's genome and its variability among isolates is needed. RESULTS: The genomic sequences of ten geographically and phenotypically diverse clinical isolates of M. catarrhalis were determined and analyzed together with two publicly available genomes. These twelve genomes were subjected to detailed comparative and predictive analyses aimed at characterizing the supragenome and understanding the metabolic and pathogenic potential of this species. A total of 2383 gene clusters were identified, of which 1755 are core with the remaining 628 clusters unevenly distributed among the twelve isolates. These findings are consistent with the distributed genome hypothesis (DGH), which posits that the species genome possesses a far greater number of genes than any single isolate. Multiple and pair-wise whole genome alignments highlight limited chromosomal re-arrangement. CONCLUSIONS: M. catarrhalis gene content and chromosomal organization data, although supportive of the DGH, show modest overall genic diversity. These findings are in stark contrast with the reported heterogeneity of the species as a whole, as wells as to other bacterial pathogens mediating OM and COPD, providing important insight into M. catarrhalis pathogenesis that will aid in the development of novel therapeutic regimens

    Differential gene expression of Moraxella catarrhalis upon exposure to human serum

    No full text
    The complement system is an important part of the innate defense against invading pathogens (Blom et al., 2009; [1]). The ability to resist complement-mediated killing is considered to be an important virulence trait for the human-restricted respiratory tract pathogen Moraxella catarrhalis, as most disease-associated M. catarrhalis isolates are complement-resistant (Wirth et al., 2007; [2]). Here we provide a detailed overview of the experimental methods that we have used to study the molecular basis of M. catarrhalis complement-resistance by transcriptome profiling of the bacterium upon exposure to 10% normal human serum (NHS), associated with the study of de Vries et al. published in Molecular Microbiology in 2014 [3]

    Analysis of the In Vitro Transcriptional Response of Human Pharyngeal Epithelial Cells to Adherent Streptococcus pneumoniae: Evidence for a Distinct Response to Encapsulated Strains▿ †

    Get PDF
    Infection of the human host by Streptococcus pneumoniae begins with colonization of the nasopharynx, which is mediated by the adherence of bacteria to the respiratory epithelium. Several studies have indicated an important role for the pneumococcal capsule in this process. Here, we used microarrays to characterize the in vitro transcriptional response of human pharyngeal epithelial Detroit 562 cells to the adherence of serotype 2 encapsulated strain D39, serotype 19F encapsulated strain G54, serotype 4 encapsulated strain TIGR4, and their nonencapsulated derivatives (Δcps). In total, 322 genes were found to be upregulated in response to adherent pneumococci. Twenty-two genes were commonly induced, including those encoding several cytokines (e.g., interleukin 1β [IL-1β] and IL-6), chemokines (e.g., IL-8 and CXCL1/2), and transcriptional regulators (e.g., FOS), consistent with an innate immune response mediated by Toll-like receptor signaling. Interestingly, 85% of genes were induced specifically by one or more encapsulated strains, suggestive of a capsule-dependent response. Importantly, purified capsular polysaccharides alone had no effect. Over a third of these loci encoded products predicted to be involved in transcriptional regulation and signal transduction, in particular mitogen-activated protein kinase signaling pathways. Real-time PCR of a subset of 10 genes confirmed the microarray data and showed a time-dependent upregulation of, especially, innate immunity genes. The downregulation of epithelial genes was most pronounced upon adherence of D39Δcps, as 68% of the 161 genes identified were repressed only by this nonencapsulated strain. In conclusion, we identified a subset of host genes specifically induced by encapsulated strains during in vitro adherence and have demonstrated the complexity of interactions occurring during the initial stages of pneumococcal infection

    ESSENTIALS: Software for Rapid Analysis of High Throughput Transposon Insertion Sequencing Data.

    Get PDF
    Contains fulltext : 111011.pdf (publisher's version ) (Open Access)High-throughput analysis of genome-wide random transposon mutant libraries is a powerful tool for (conditional) essential gene discovery. Recently, several next-generation sequencing approaches, e.g. Tn-seq/INseq, HITS and TraDIS, have been developed that accurately map the site of transposon insertions by mutant-specific amplification and sequence readout of DNA flanking the transposon insertions site, assigning a measure of essentiality based on the number of reads per insertion site flanking sequence or per gene. However, analysis of these large and complex datasets is hampered by the lack of an easy to use and automated tool for transposon insertion sequencing data. To fill this gap, we developed ESSENTIALS, an open source, web-based software tool for researchers in the genomics field utilizing transposon insertion sequencing analysis. It accurately predicts (conditionally) essential genes and offers the flexibility of using different sample normalization methods, genomic location bias correction, data preprocessing steps, appropriate statistical tests and various visualizations to examine the results, while requiring only a minimum of input and hands-on work from the researcher. We successfully applied ESSENTIALS to in-house and published Tn-seq, TraDIS and HITS datasets and we show that the various pre- and post-processing steps on the sequence reads and count data with ESSENTIALS considerably improve the sensitivity and specificity of predicted gene essentiality

    Molecular Aspects of Moraxella catarrhalis Pathogenesis

    Get PDF
    Summary: In recent years, Moraxella catarrhalis has established its position as an important human mucosal pathogen, no longer being regarded as just a commensal bacterium. Further, current research in the field has led to a better understanding of the molecular mechanisms involved in M. catarrhalis pathogenesis, including mechanisms associated with cellular adherence, target cell invasion, modulation of the host's immune response, and metabolism. Additionally, in order to be successful in the host, M. catarrhalis has to be able to interact and compete with the commensal flora and overcome stressful environmental conditions, such as nutrient limitation. In this review, we provide a timely overview of the current understanding of the molecular mechanisms associated with M. catarrhalis virulence and pathogenesis

    Development of Genomic Array Footprinting for Identification of Conditionally Essential Genes in Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a major cause of serious infections such as pneumonia and meningitis in both children and adults worldwide. Here, we describe the development of a high-throughput, genome-wide technique, genomic array footprinting (GAF), for the identification of genes essential for this bacterium at various stages during infection. GAF enables negative screens by means of a combination of transposon mutagenesis and microarray technology for the detection of transposon insertion sites. We tested several methods for the identification of transposon insertion sites and found that amplification of DNA adjacent to the insertion site by PCR resulted in nonreproducible results, even when combined with an adapter. However, restriction of genomic DNA followed directly by in vitro transcription circumvented these problems. Analysis of parallel reactions generated with this method on a large mariner transposon library showed that it was highly reproducible and correctly identified essential genes. Comparison of a mariner library to one generated with the in vivo transposition plasmid pGh:ISS1 showed that both have an equal degree of saturation but that 9% of the genome is preferentially mutated by either one. The usefulness of GAF was demonstrated in a screen for genes essential for surviving zinc stress. This identified a gene encoding a putative cation efflux transporter, and its deletion resulted in an inability to grow under high-zinc conditions. In conclusion, we developed a fast, versatile, specific, and high-throughput method for the identification of conditionally essential genes in S. pneumoniae.

    Fine-tuning of choline metabolism is important for pneumococcal colonization

    No full text
    The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1, whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1, involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce
    corecore