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Abstract

High-throughput analysis of genome-wide random transposon mutant libraries is a powerful tool for (conditional) essential
gene discovery. Recently, several next-generation sequencing approaches, e.g. Tn-seq/INseq, HITS and TraDIS, have been
developed that accurately map the site of transposon insertions by mutant-specific amplification and sequence readout of
DNA flanking the transposon insertions site, assigning a measure of essentiality based on the number of reads per insertion
site flanking sequence or per gene. However, analysis of these large and complex datasets is hampered by the lack of an
easy to use and automated tool for transposon insertion sequencing data. To fill this gap, we developed ESSENTIALS, an
open source, web-based software tool for researchers in the genomics field utilizing transposon insertion sequencing
analysis. It accurately predicts (conditionally) essential genes and offers the flexibility of using different sample
normalization methods, genomic location bias correction, data preprocessing steps, appropriate statistical tests and various
visualizations to examine the results, while requiring only a minimum of input and hands-on work from the researcher. We
successfully applied ESSENTIALS to in-house and published Tn-seq, TraDIS and HITS datasets and we show that the various
pre- and post-processing steps on the sequence reads and count data with ESSENTIALS considerably improve the sensitivity
and specificity of predicted gene essentiality.
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Introduction

Discovery of microbial genes essential for growth, survival and/

or pathogenesis has frequently been used for gene functional

analysis, determining the minimal functional genome and

identification of therapeutic targets [1–3]. Traditionally, this

approach involves extensive testing of fitness defects of single

mutants during relevant in vitro or in vivo conditions with methods

that are far from high-throughput.

A first step towards high-throughput screening for essential

genes was made with Signature Tagged Mutagenesis (STM) [4].

STM screens single mutants in pools of up to 96 tagged mutants,

and readout of mutant pools before and after conditional

challenge occurs by Southern hybridization detection of mutant-

specific DNA tags. Microarray-based methods for detection of

transposon mutants, e.g. Transposon Site Hybridization (TraSH)

and Genomic Array Footprinting (GAF) [5–7], further improved

the throughput of microbial essential gene discovery. However,

these approaches potentially suffer from cross-hybridization and

lack of resolution hampering the identification of the exact

location of the transposon insertion site [8,9]. These problems

were alleviated by high-throughput transposon insertion sequenc-

ing analysis methods such as Tn-seq or TraDIS or variants thereof

[10–13].

With transposon sequencing analysis the presence of each

unique mutant within a defined or random transposon mutant

library is determined by amplification of DNA flanking the

transposon insertion site followed by massively parallel sequencing.

Sequence reads from DNA flanking transposon insertion sites are

mapped on the reference genome and summarized for each

insertion and gene, generating a measurement of fitness for every

knockout in comparison to the expected values based on mutant

library size, number of possible unique insertion sites per gene and

number of sequence reads. Similarly, to identify conditionally

essential genes, these libraries are exposed to a challenge condition

that will induce loss of mutants of genes essential for survival in

these conditions. A measurement of fitness for every knockout

comparison between challenge and control condition can then be

calculated. In summary, with this technique (i) the decreased

fitness of mutants can be detected, (ii) the ubiquity of a specific

mutant can be counted and compared to all other mutants in the

mutant library and (iii) the exact location of the transposon

insertion can be determined.

This method has been successfully applied to determine gene

essentiality and the minimal genome of Streptococcus pneumoniae
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TIGR4, Salmonella typhi TY2, Mycobacterium tuberculosis, Caulobacter

crescentus and others, and has also been used to pinpoint genes

necessary for survival under challenging conditions, such as during

colonization or when exposed to antimicrobial chemicals [10,14–

18].

Unfortunately, analysis of these next-gen sequencing datasets is

hampered by the lack of an easy-to-use and automated method to

process the gigabytes of sequence data generated by these

methods. Automated download and processing of read files,

filtering of spurious ‘contaminating’ reads on presence of

transposon sequence and handling ‘barcode’ sequences which

uniquely assign reads to a specific sample is still a laborious and

hands-on task, only suited for bioinformaticians experienced in

next-gen sequencing analysis. Furthermore, various steps have to

be taken to improve data quality of transposon insertion

sequencing analysis, such as filtering of input data for repetitive

sequences, removal of sequence reads from transposons inserted in

the 39 end of a gene that do not cause loss of function, correcting

read count for insertion biases introduced by the presence of

multiple replication forks in bacteria [19] and proper normaliza-

tion methods and statistics suitable for next-gen sequencing count

data [20,21].

We developed ESSENTIALS, an open source, web-based

software tool suitable for researchers in the genomics field utilizing

transposon insertion sequencing analysis. It accurately predicts

(conditionally) essential genes and offers the flexibility of using

different sample normalization methods, genomic location bias

correction, data preprocessing steps, appropriate statistical tests

and various visualizations to examine the results. Additionally we

show that the various pre- and post-processing steps of the

sequence reads and count data with ESSENTIALS considerably

improves both sensitivity and specificity of predicted gene

essentiality.

Results and Discussion

To facilitate the analysis of data generated by transposon

insertion sequencing by genomics researchers we developed a web-

based tool that downloads and processes read files provided by a

sequencing facility, filters contaminating reads and splits multi-

sample read files on ‘barcode’ sequences that uniquely assign reads

to a specific sample. These reads are then mapped onto the

relevant genome using pass [22], while non-informative reads,

such as reads from repetitive sequences or reads from transposons

inserted in the 39 end of a gene that do not cause loss of function,

are removed. Count data per transposon insertion and per gene is

calculated and corrected for biases introduced by the presence of

multiple replication forks in bacteria [23]. Finally, normalization

on replicate samples and statistics suitable for next-gen sequencing

count data [20,24] is applied and presented to the user as tables,

figures and an interactive genomic view using MINOMICS [25].

Benchmarking Datasets
To determine the performance and the optimal processing

parameters of ESSENTIALS, we performed a Tn-seq experiment

on S. pneumoniae R6 because it is one of the most well researched

organisms regarding gene essentiality. The experiment was

performed in duplicate on two S. pneumoniae R6 mutant libraries

of approximately 40,000 and 15,000 colony forming units (CFU)

respectively (see text S1 for a detailed description of the materials

and methods used). Fold change under-representation and

statistics of 49 known essential and 49 known non-essential genes

of S. pneumoniae R6, obtained from OGEEDB [26], were generated

using various settings of the ESSENTIALS tool and analyzed with

(i) Receiver Operator Characteristics (ROC) on the fold changes

to determine if the various steps decreased the number of false

positives and false negatives and with (ii) a T-test to examine if

the fold changes of essential genes and non-essential genes were

significantly different. Input data for ROC analysis and T-testing

is given in table S1, including literature references. Genes were

considered essential if the associated FDR adjusted p-value of the

experiment replicates was ,0.05 and if the ratio of the expected

number of reads, calculated from the number of possible

insertion sites per gene, was lower than the fold change cut-off

predicted by ESSENTIALS. A detailed description about the

functions of all S. pneumoniae R6 essential genes found will be

given elsewhere [27].

To benchmark detection of conditionally essential genes in

which Tn-seq libraries are compared, we obtained Illumina

sequence reads used for determining genes involved in tobramycin

resistance in P. aeruginosa PAO1 [10] from the EBI Short Read

Archive [28]. The effect of gene knockouts of P. aeruginosa PAO1

on the minimum inhibitory concentration (MIC) of tobramycin

has been comprehensively analyzed [10,29], and 12 mutants

without a tobramycin phenotype and 31 mutants with a 4 fold

lower tobramycin MIC are described in these studies. Fold change

under-representation and statistics of the 31 known essential and

12 known non-essential genes for P. aeruginosa PAO1 tobramycin

resistance were generated using various settings of the ESSEN-

TIALS tool and analyzed with Receiver Operator Characteristics

(ROC) and T-testing as described above for S. pneumoniae (table

S2). A gene was considered essential when it had a 2-fold lower

number of read counts per gene in the tobramycin stressed

condition compared to the reference condition and an associated

FDR adjusted p-value ,0.05 of the experimental replicates. In the

analysis performed by Gallagher, [10], this fold change cut-off

resulted in 117 genes predicted to be required for tobramycin

resistance.

Removal of Reads Mapping in Repeat Regions or in the
39 Terminus Improves Essential Gene Detection

Insertion sites that do not have unique flanking sequences

cannot be assigned to a single gene and are as such not informative

for gene essentiality. For instance in S. pneumoniae R6 more than

5% of the insertion site flanking sequences have a perfect match

elsewhere on the genome (results not shown). Failure to remove

these reads will result in assigning reads to essential genes, causing

these potentially to be detected as non-essential. Reads with a

perfect match elsewhere on the genome sequence were excluded,

which resulted in removal of 12,006 insertion site flanking

sequences, which in turn resulted in an additional 17 essential

genes detected for S. pneumoniae R6. ROC analysis of essential

versus non-essential genes showed an increased area under the

curve (AUC) (Table 1). For P. aeruginosa PAO1, after repeat-

filtering, five genes were no longer considered essential for

tobramycin resistance. Repeat filtering did not result in an

increase in predictive power of essential genes, as the AUC did

not increase (Table 1).

Likewise, transposons that are inserted in the 39 terminus of a

gene often might not lead to loss of function of that gene. Removal

of reads mapped to these insertions resulted in an additional 53

essential genes in S. pneumoniae R6, a near-perfect AUC and

consequently a dramatic reduction of the P-value (Table 1;

Fig. 1A). For P. aeruginosa PAO1 a small decrease in the AUC but a

minor improvement of p-value was observed, however the two

populations of essential genes and non-essential genes still could

not be considered significantly different (p,0.01) (Table 1;

Fig. 1B).

Rapid Analysis of Transposon Sequencing Data
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Normalization Improves Detection of Essential Genes
In many published transposon insertion sequencing analysis

studies, information regarding experimental variability from the

replicate experiments is not used in statistical testing for gene

essentiality. For instance Langridge and co-workers combined the

reads per gene of replicate target and control experiments, added

an arbitrary value of 100 to all read counts, and calculated ratio’s

followed by testing for deviation from a normal distribution [30].

To determine the experimental variability, replicate experiments

of the same mutant library should be performed and compared

using appropriate statistical tests. Sequencing a sample to half the

read-depth compared to other samples will yield half the number

of reads mapping to each gene. To facilitate comparisons

between samples of varying read-depth, scaling of the samples

to their total number of reads is therefore required. Simple total

read count scaling is not always appropriate; the number of reads

assigned to a gene is not only dependent on the essentiality and

the number of insertion sites, but also on the composition of the

mutant library after treatment. If many mutants survive in one

experimental condition but not in the other, read counts for the

remaining genes in that sample are increased. Additionally, PCR

artifacts can cause strong over-representation of a single mutant.

These artifacts can cause a skew, resulting in decreased specificity

and sensitivity, similarly to what is described for RNA-seq data

[20].

In microarray data analysis, Quantile normalization [31] is

frequently used to correct compositional bias by making distribu-

tions of microarray data identical in statistical properties. Use of

Quantile normalization on Tn-seq data had a negligent effect on

data quality, and prediction of essential genes for S. pneumoniae was

still not 100% correct as the AUC had not reached 1 yet (Table 1).

Recently, a method was proposed by Robinson et al. [20] for

normalizing next-gen sequencing count data, named the trimmed

mean of M values (TMM). TMM and its closely related method

Relative Log Expression (RLE) trim an upper and lower fraction

of the data and use the remaining data to calculate normalization

factors. Application of the TMM normalization method to the S.

pneumoniae R6 datasets resulted in better separation of essential and

non-essential genes judged from the increase in AUC values

(Table 1; Fig. 1A). Application of the RLE method gave near-

identical results compared to TMM normalization (results not

shown).

Genomic Location Insertion and Read Count Bias can be
Corrected by LOESS Regression

Conceivably, because of genomic replication during growth and

the resulting increase in available DNA close to the origin of

replication (ORI), read counts increase as they are closer to the

ORI, especially if multiple replication forks are present [32].

Additionally, more genomic DNA close to the ORI is available for

transposon mutagenesis, resulting in a higher number of transpo-

son insertions closer to the ORI. These two factors produce a

substantial bias, showing up as typical V-shape in the read counts

per gene relative to the genomic location, with average read counts

at the ORI being at least 3 times higher than those near the

terminus of replication (Fig. 2A). Gallagher et al. [10] noticed a

similar bias in their study when P. aeruginosa PAO1 was exposed to

tobramycin. They corrected for this bias by calculating the local

read density within a 100-kb window and normalizing the number

of reads at that position relative to the average local read density

for that window.

Because the local read density window needs to be optimized

for genome size and mutant library size, we opted instead to

correct for this bias by using locally weighted scatterplot

smoothing (LOESS) on read counts per insertion site and per

gene as function of genomic position. By applying the ratio

between the LOESS curve and a straight line of the average

signal to the read counts, the read count bias per insertion site

Table 1. Effect of statistical methods on the prediction of essential genes based on two datasets.

Experiment Applied processing step
Essential genes
detected* Predictive value

AUC std.error P

Essential S. pneumoniae R6 Scaling 288 0.9517 2.23E-02 1.11E-22

Repeatfiltering 305 0.9588 1.83E-02 6.36E-23

Gene truncation 358 0.9996 7.12E-04 3.20E-38

Quantile normalization 359 0.9996 7.12E-04 6.08E-38

TMM normalization 342 1.0000 0.00E+00 1.26E-37

Genomic location bias correction 339 1.0000 0.00E+00 3.36E-40

Essential for tobramycin
resistance P. aeruginosa PAO1

Scaling 185 0.6774 8.06E-02 1.27E-02

Repeatfiltering 180 0.6747 8.07E-02 1.29E-02

Gene truncation 173 0.6667 8.06E-02 1.08E-02

Quantile normalization 174 0.6640 8.10E-02 1.06E-02

TMM normalization 190 0.6640 8.10E-02 1.09E-02

Genomic location bias correction 121 0.7634 7.40E-02 2.16E-03

Literature 117 0.7406 7.56E-02 2.66E-03

The predictive value of each method was assessed using ROC curves and a Welch T-test.
*Cut-offs for S. pneumoniae R6 were automatically detected by ESSENTIALS while for P. aeruginosa PAO1 a cut-off of 2.5 fold underrepresentation of reads per gene in
the challenge condition was used to facilitate comparison with the literature data from Gallagher et al.
doi:10.1371/journal.pone.0043012.t001

Rapid Analysis of Transposon Sequencing Data
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and per gene (Fig. 2B) was alleviated without the requirement of

parameter optimization. Using this approach, a better separation

of non-essential and essential genes was observed (Table 1, Fig. 1A

and B) for both S. pneumoniae R6 and P. aeruginosa PAO1, reflected

in decreased p-values and a perfect AUC for S. pneumoniae R6 and

a higher AUC than the prediction by Gallagher et al. for P.

aeruginosa PAO1.

ESSENTIALS can be Used for different Transposon
Mutagenesis Sequencing Methods

In order to validate ESSENTIALS as a tool for general use we

have analyzed several transposon sequencing literature datasets

obtained from SRA at EBI [33] that were based on different

transposon insertion sequencing technologies. We compared the

Figure 1. Box whisker plots of gene essentiality data. Box whisker plot showing the sample minimum, lower quartile, median, upper quartile,
and sample maximum of (A) fold change data of essential (E) and nonessential (NE) genes for growth of S. pneumoniae and (B) fold change data of
essential (E) and nonessential (NE) genes for tobramycin resistance of P. aeruginosa PAO1 as calculated by ESSENTIALS after the various processing
steps and in the case of P. aeruginosa PAO1 also for the fold change data presented by Gallagher et al. [10]. Significant difference between the
essential and non-essential gene distributions is shown by *(p,0.01).
doi:10.1371/journal.pone.0043012.g001

Rapid Analysis of Transposon Sequencing Data
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results of ESSENTIALS on gene essentiality with the results

presented in the respective studies using either the optimal fold

change under-representation cut-off predicted by ESSENTIALS

or the same fold change cut-off as applied in the study [34–36] and

a FDR corrected p-value ,0.05 cut-off. Because the results

obtained with the reference sets (Table 1) produced, in the case of

Figure 2. Read count as a function of genomic position per 1 kb. Read count of a single Tn-seq experiment of S. pneumoniae R6 gene
essentiality as a function of the genomic position before (A) and after (B) genomic location correction using Loess. Each dot represents 1 kb of
sequence. Regression on the data was performed using Loess as implemented in the loess R package and plotted on the graph as a black line.
doi:10.1371/journal.pone.0043012.g002

Rapid Analysis of Transposon Sequencing Data
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S. pneumoniae R6, a 100% correct prediction, and for P. aeruginosa

PAO1, a better prediction than presented by the original authors

[10] we are confident in suggesting ESSENTIALS performs

equally well or better in detecting (conditionally) essential genes

using the optimal settings (Table 1, in bold). Although a direct

comparison of the number of false positives and false negatives

cannot be made because of the arbitrary fold change and P-value

cut-offs or different analysis algorithms used in the studies

describing these datasets, ESSENTIALS allowed determination

of the vast majority of the previously reported conditionally

essential genes (Table 2). Additionally, the flexibility of ESSEN-

TIALS in selecting how to process the various read file formats

allows the analysis of all known transposon insertion sequencing

analysis methods.

Methods

ESSENTIALS is implemented in Perl v5.8.8 and R v2.14.1. Its

web interface is generated by the FG-web framework (van Hijum

et al., https://trac.nbic.nl/fgweb/). The ESSENTIALS algorithm

downloads and preprocesses sequencing read files, matches

sequenced transposon flanking reads to insertion sites on the

genome and then performs various processing steps and statistics

on the resulting transposon insertion count data. Via email the

progress of the run is reported.

There are three major sections in the web-interface: (i)

configuration file upload and genome selection; (ii) parameter

settings; and (iii) displaying the results. The web tool works with

major web browsers such as Internet Explorer, Firefox, Safari and

Opera. It can be tuned to the needs of a researcher by modifying

several parameters controlling the alignments, normalization,

statistical tests and visualization.

Input Data
A simplified flow chart of the procedure followed by ESSEN-

TIALS is shown in Figure 3. The genome of the organism that was

used to create the knockout library for the Tn-seq can be selected

either by (i) selecting from the available daily updated Genbank

sequences or, (ii) uploading a Genbank file. A tab-delimited

configuration file should be uploaded or can be generated using

the ESSENTIALS web-interface. The configuration file should

contain the following information: (i) a hyper link to the sequence

reads, (ii) the barcode sequence, if used, (iii) transposon sequence

(if used), (iv) condition, (v) knockout library, (vi) sequence file

format (FASTA, FASTQ, EXPORT, SCARF, CSFASTA, BAM,

SAM or a custom tab delimited file) and (vii) used compression

(none, zip, gzip, bzip2). After supplying ESSENTIALS with the

sample descriptions and additional information the pre- and post-

processing steps of the algorithm can be set by the user and the

analysis can be started.

Algorithm
The ESSENTIALS algorithm matches sequenced transposon

flanking reads to insertion sites on the genome and then performs

statistics on the resulting counts data. A stepwise explanation of the

procedure follows below. When a BAM, SAM or a tab delimited

file containing the read counts per insertion site is uploaded, the

filtering and aligning procedures are skipped and the count data

per gene is generated from the user supplied mappings.

Step 1. All (unique) putative insertion sites (either random or

mariner transposon TA insertion sites) are detected on the genome

of interest and sequences adjacent to each insertion site are

entered into a FASTA file.

Step 2. Sequence read files are downloaded, uncompressed and

transformed to FASTA using a modified version of fq_all2std from

MAQ (http://maq.sourceforge.net/). Read files are split on

barcodes using a modified version of fastx_split from the fastx

toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) that uses Le-

venshtein distance instead of Hamming distance to allow fuzzy

matching of barcodes of different lengths. When necessary

sequence reads are filtered on the presence of transposon repeats

using PASS v1.2 [37] or fastx_split for long (.12) or short

transposon ends ( = ,12), respectively from either the 59 or 39 end.

Step 3. The transposon-flanking genomic sequence reads are

aligned to the insertion sites using PASS and count data is

generated per unique insertion site and per gene. Reads that map

on more than one place on the genome can be removed from the

analysis. Reads that map in the 39 end of a gene can also be

filtered out to remove transposon insertions that do not cause loss

of function. Genomic location insertion and read bias is corrected

by LOESS regression on read counts per insertion site and per

gene relative to genomic location.

Step 4. Count data is combined for analysis with EdgeR [38]

and normalization is performed using either scaling, trimmed

mean of M-values (TMM), Relative Log Expression (RLE) [20] or

Quantiles [39].

Step 5. Read counts per gene or per insertion site of the control

and target samples are tested for significant difference to

Table 2. The use of ESSENTIALS on data generated by various transposon sequencing techniques.

Strain Condition Number of essential genes/Log2 FC cut-off$
Method Ref

Literature ESSENTIALS Overlap

N FC N FC N

S. pneumoniae TIGR4 essential 396 NA 423 24.1 357 Tn-seq [43]

S. typhi Ty2 essential 356 NA 335 23.71 323 TraDIS [44]

bile salt 169 21.40* 229 21.40# 161 TraDIS

H. influenzae essential 358 24.32 383 23.2 344 HITS [45]

Rd in vivo 141 21.79 130 21.79# 100 HITS

$Optimal fold change (FC) underrepresentation cut-offs detected by ESSENTIALS; N: number; NA: Not available, a different method was used to determine gene
essentiality in these studies.
#A minimum normalized average read count of 50 reads per gene was required; FC cut-offs were the same as used in the literature reference to facilitate comparison.
*Although the authors state in their methods that a 22 log2 fold change and a p,1*10-5, adj. p,2.5E-4 cut-off was used, only the p-value cut-offs were applied,
resulting in a -1.4 fold change cut-off (personal communication Julian Parkhill).
doi:10.1371/journal.pone.0043012.t002
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determine conditional essentiality of genes or insertion sites.

Obligate gene essentiality is determined by comparing the

expected number of reads per gene (based on the number of

insertion sites per gene, the mutant library size and the sequencing

depth) and the measured number of reads per gene. Significantly

underrepresented genes are considered (conditionally) essential.

ESSENTIALS uses the negative binomial distribution statistical

model in EdgeR, an exact test or a General Linearized Model

Figure 3. Simplified flowchart of the ESSENTIALS procedure. Links to sequence reads files are uploaded and parameters are optionally
changed via the FG-web interface that works on most web-browsers. It allows users to perform multiple runs at the same time through session
management. As processes are queued, users can start multiple analyses at the same time, and check the progress via web-pages that can be
bookmarked.
doi:10.1371/journal.pone.0043012.g003

Rapid Analysis of Transposon Sequencing Data
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likelihood ratio test and estimates the dispersion in the data with

quantile-adjusted conditional maximum likelihood (qCML) or

Cox-Reid profile-adjusted likelihood (CR). The qCML method is

applied to experiments with a single mutant library and the CR

method to experiments with multiple libraries. The log2 trans-

formed ratio of target over control or measured over expected and

signal of (conditionally) essential genes or insertion sites is then

used to generate kernel density plots using a Gaussian model with

stepwise increasing bandwidth and 2048 bins until a single (in the

case of essential genes) or four (in the case of conditional essential

genes) local minima are found. Local minima are detected by

calculating the first derivative of the density and by locating the

position where it traverses from values below to values above zero.

This fold change value corresponds to a value closest to the

minimum between the peaks of essential and non-essential genes

and can be used as a cut-off to determine whether a gene is

essential or not.

Output of ESSENTIALS
Results of ESSENTIALS include: (i) Principal Component

Analysis (PCA) plots, which can be used to explore the similarities

between the target and control samples based on the number of

reads per gene or per insertion site; (ii) Signal to log2-ratio (MA)

plots which can be used to visually inspect the fold ratio of target

over control or measured over expected and signal of (condition-

ally) essential genes or insertion sites; (iii) Density plots of the ratio

of target over control or measured over expected and signal of

(conditionally) essential genes or insertion sites with detected

putative fold change cut-offs for selection of essential genes; (iv) tab

delimited tables containing the raw counts, normalized counts,

output from the statistical tests and genomic information and; (v)

Links to visualize the results in MINOMICS [40], also

implemented in the FG-web framework.

Availability
The web-interface of ESSENTIALS, the output from the

various analyses presented in this paper and an optional demo

mode, analyzing a subset of the S. pneumoniae R6 dataset, can be

accessed freely at http://bamics2.cmbi.ru.nl/websoftware/

essentials/. Source code is available via http://trac.nbic.nl/

essentials/.

Conclusions
Transposon insertion sequencing analysis is becoming the

default method of high-throughput fitness screening in prokary-

otes. Emergence of next-generation sequencing based approaches

such as transposon insertion sequencing analysis and high-

throughput random RNAi interference screens in eukaryotic

organisms [41,42] will lead to similar data types. ESSENTIALS

provides an easy to use and automated method to rapidly analyze

these datasets. Prediction of gene essentiality by ESSENTIALS is

comparable or possibly better than that reported by the original

authors because ESSENTIALS applies data filtering, normaliza-

tion and suitable statistical tests that are optimized to recover as

many as possible essential genes. ESSENTIALS will greatly

benefit researchers performing these studies saving both time and

providing robust, yet sensitive detection of essential genes from

transposon insertion sequencing analysis experiments.
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