209 research outputs found

    Interset: A natural language interface for teleoperated robotic assembly of the EASE space structure

    Get PDF
    A teleoperated robot was used to assemble the Experimental Assembly of Structures in Extra-vehicular activity (EASE) space structure under neutral buoyancy conditions, simulating a telerobot performing structural assembly in the zero gravity of space. This previous work used a manually controlled teleoperator as a test bed for system performance evaluations. From these results several Artificial Intelligence options were proposed. One of these was further developed into a real time assembly planner. The interface for this system is effective in assembling EASE structures using windowed graphics and a set of networked menus. As the problem space becomes more complex and hence the set of control options increases, a natural language interface may prove to be beneficial to supplement the menu based control strategy. This strategy can be beneficial in situations such as: describing the local environment, maintaining a data base of task event histories, modifying a plan or a heuristic dynamically, summarizing a task in English, or operating in a novel situation

    Final results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines

    Get PDF
    This paper presents final results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Special attention is paid to the improvement of low fidelity engineering (BEM based) models with higher fidelity (CFD) models but also with intermediate fidelity free vortex wake (FVW) models. The latter methods were found to be a good basis for improvement of induction modelling in engineering methods amongst others for the prediction of yawed cases, which in AVATAR was found to be one of the most challenging subjects to model. FVW methods also helped to improve the prediction of tip losses. Aero-elastic calculations with BEM based and FVW based models showed that fatigue loads for normal production cases were over predicted with approximately 15% or even more. It should then be realised that the outcome of BEM based models does not only depend on the choice of engineering add-ons (as is often assumed) but it is also heavily dependent on the way the induced velocities are solved. To this end an annulus and element approach are discussed which are assessed with the aid of FVW methods. For the prediction of fatigue loads the so-called element approach is recommended but the derived yaw models rely on an annulus approach which pleads for a generalised solution method for the induced velocities

    Latest results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines

    Get PDF
    This paper presents the most recent results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Measurements on a DU 00-W-212 airfoil are presented which have been taken in the pressurized DNW-HDG wind tunnel up to a Reynolds number of 15 Million. These measurements are compared with measurements in the LM wind tunnel for Reynolds numbers of 3 and 6 Million and with calculational results. In the analysis of results special attention is paid to high Reynolds numbers effects. CFD calculations on airfoil performance showed an unexpected large scatter which eventually was reduced by paying even more attention to grid independency and domain size in relation to grid topology. Moreover calculations are presented on flow devices (leading and trailing edge flaps and vortex generators). Finally results are shown between results from 3D rotor models where a comparison is made between results from vortex wake methods and BEM methods at yawed conditions

    UNAFLOW project: UNsteady Aerodynamics of FLOating Wind turbines

    Get PDF
    UNAFLOW (UNsteady Aerodynamics for Floating Wind) is a joint EU-IRPWIND founded experiment on wind turbine rotor unsteady aerodynamics. It brings together four different academic contributors: Energy research Centre of the Netherlands (ECN), DTU Wind Energy, University of Stuttgart (USTUTT) and Politecnico di Milano (PoliMi) sharing knowledge both in numerical modelling and in experimental tests design, allowing direct numerical and experimental comparison. The experimental tests carried out for UNAFLOW are of the same type of the ones carried out during the ongoing EU H2020 project LIFES50+ [1], regarding both the unsteady behaviour of the 2d blade section and the entire turbine rotor, although with improved setup and wider test matrix. The project partners are already currently jointly collaborating in the AVATAR project [2], developing and validating numerical models of different accuracy level. The numerical models used in the UNALFOW project range from engineering tool (eg. BEM) to high fidelity CFD methods. Numerical simulations are used both in the design of experiment phase and in the results analysis allowing for an in depth understanding of the experimental findings through advanced modelling approach. The UNAFLOW project, together with a new understanding of the unsteady behaviour of the turbine rotor aerodynamics, will provide also an open database to be shared among the scientific community for future analysis and new models validation

    Global sensitivity analysis of model uncertainty in aeroelastic wind turbine models

    Get PDF
    A framework is presented for performing global sensitivity analysis of model parameters associated with the Blade Element Momentum (BEM) models. Sobol indices based on adaptive sparse polynomial expansions are used as a measure of global sensitivities. The sensitivity analysis workflow is developed using the uncertainty quantification toolbox UQLab that is integrated with TNO's Aero-Module aeroelastic code. Uncertainties in chord, twist, and lift- and drag-coefficients have been parametrized through the use of NURBS curves. Sensitivity studies are performed on the NM80 wind turbine model from the DanAero project, for a case with 19 uncertainties in both model and geometry. The combination of parametrization and sparse adaptive polynomial chaos yields a new efficient framework for global sensitivity analysis of aeroelastic wind turbine models, paving the way to effective model calibration

    Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling

    Get PDF
    This paper presents an efficient strategy for the Bayesian calibration of parameters of aerodynamic wind turbine models. The strategy relies on constructing a surrogate model (based on adaptive polynomial chaos expansions), which is used to perform both parameter selection using global sensitivity analysis and parameter calibration with Bayesian inference. The effectiveness of this approach is shown in two test cases: calibration of airfoil polars based on the measurements from the DanAero MW experiments, and calibration of five yaw model parameters based on measurements on the New MEXICO turbine in yawed conditions. In both cases, the calibrated models yield results much closer to the measurement data, and in addition they are equipped with an estimate of the uncertainty in the predictions

    Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling

    Get PDF
    This paper presents an efficient strategy for the Bayesian calibration of parameters of aerodynamic wind turbine models. The strategy relies on constructing a surrogate model (based on adaptive polynomial chaos expansions), which is used to perform both parameter selection using global sensitivity analysis and parameter calibration with Bayesian inference. The effectiveness of this approach is shown in two test cases: calibration of airfoil polars based on the measurements from the DANAERO MW experiments and calibration of five yaw model parameters based on measurements on the New MEXICO turbine in yawed conditions. In both cases, the calibrated models yield results much closer to the measurement data, and in addition they are equipped with an estimate of the uncertainty in the predictions

    Comparison of 3D transitional CFD simulations for rotating wind turbine wings with measurements:Paper

    Get PDF
    Since the investigation of van Ingen et al., attempts were undertaken to search for laminar parts within the boundary layer of wind turbines operating in the lower atmosphere with much higher turbulence levels than seen in wind tunnels or at higher altitudes where airplanes usually fly. Based on the results of the DAN-Aero experiment and the Aerodynamic Glove project, a special work package Boundary Layer Transition was embedded in IAEwind Task 29 MexNext 3rd phase (MN3). Here, we report on the results of the application of various CFD tools to predict transition on the MEXICO blade. In addition, recent results from a comparison of thermographic pictures (aimed at detecting transition) with 3D transitional CFD are included as well. The MEXICO (2006) and NEW MEXICO (2014) wind tunnel experiments on a turbine equipped with three 2.5 m blades have been described extensively in the literature. In addition, during MN3, high-frequency Kulite data from experiments were used to detect traces of transitional effects. Complementary, the following set of codes were applied to cases 1.1 and 1.2 (axial inflow with 10 m/s and 15 m/s respectively) – elsA, CFX, OpenFOAM (with 2 different turbulence/transitional models), Ellipsys, (with 2 different turbulence models and eN transition prediction tool), FLOWer and TAU – to search for detection of laminar parts by means of simulation. Obviously, the flow around a rotating blade is much more complicated than around a simple 2D section. Therefore, results for even integrated quantities like thrust and torque are varying strongly. Nevertheless, visible differences between fully turbulent and transitional set-ups are present. We discuss our findings, especially with respect to turbulence and transition models used

    Satellite telemetry of Blue-throated Macaws in Barba Azul Nature Reserve (Beni, Bolivia) reveals likely breeding areas

    Get PDF
    The Blue-throated Macaw (Ara glaucogularis) is a Critically Endangered species endemic to the Llanos de Moxos ecosystem of Beni, Bolivia. To aid conservation of the northwestern population that utilizes the Barba Azul Nature Reserve during the non-breeding season, we set out to learn the sites where these birds breed using satellite telemetry. We describe preliminary tests conducted on captive birds (at Loro Parque Foundation, Tenerife, Spain) that resulted in choosing Geotrak Parrot Collars, a metal, battery-operated unit that provides data through the Argos satellite system. In September 2019, we tagged three birds in Barba Azul with Geotrak collars, and received migration data for two birds, until battery depletion in November and December 2019. Our two migrant birds were tracked leaving Barba Azul on the same date (27 September), but departed in divergent directions (approximately 90 degrees in separation). They settled in two sites approximately 50-100 km from Barba Azul. Some details of the work are restricted out of conservation concern as the species still faces poaching pressures. Knowing their likely breeding grounds, reserve managers conducted site visits to where the birds were tracked, resulting in the discovery of breeding birds, although no birds still carrying a transmitter were seen then. A single individual still carrying its collar was spotted 13 August 2021 at Barba Azul. The work suggests that the Blue-throated Macaws of Barba Azul use breeding sites that are scattered across the Llanos de Moxos region, although within the recognized boundaries of the northwestern subpopulation. We conclude that the use of satellite collars is a feasible option for research with the species and could provide further conservation insights
    • …
    corecore