40 research outputs found

    alpha -Lactalbumin (LA) Stimulates Milk beta-1,4-Galactosyltransferase I (beta 4Gal-T1) to Transfer Glucose from UDP-glucose to N-Acetylglucosamine: CRYSTAL STRUCTURE OF beta 4Gal-T1·LA COMPLEX WITH UDP-Glc*

    Get PDF
    beta-1,4-Galactosyltransferase 1 (Gal-T1) transfers galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc), which constitutes its normal galactosyltransferase (Gal-T) activity. In the presence of alpha -lactalbumin (LA), it transfers Gal to Glc, which is its lactose synthase (LS) activity. It also transfers glucose (Glc) from UDP-Glc to GlcNAc, constituting the glucosyltransferase (Glc-T) activity, albeit at an efficiency of only 0.3-0.4% of Gal-T activity. In the present study, we show that LA increases this activity almost 30-fold. It also enhances the Glc-T activity toward various N-acyl substituted glucosamine acceptors. Steady state kinetic studies of Glc-T reaction show that the Km for the donor and acceptor substrates are high in the absence of LA. In the presence of LA, the Km for the acceptor substrate is reduced 30-fold, whereas for UDP-Glc it is reduced only 5-fold. In order to understand this property, we have determined the crystal structures of the Gal-T1·LA complex with UDP-Glc·Mn2+ and with N-butanoyl-glucosamine (N-butanoyl-GlcN), a preferred sugar acceptor in the Glc-T activity. The crystal structures reveal that although the binding of UDP-Glc is quite similar to UDP-Gal, there are few significant differences observed in the hydrogen bonding interactions between UDP-Glc and Gal-T1. Based on the present kinetic and crystal structural studies, a possible explanation for the role of LA in the Glc-T activity has been proposed

    Iterative cluster-NMA: A tool for generating conformational transitions in proteins

    Get PDF
    Computational models provide insight into the structure–function relationship in proteins. These approaches, especially those based on normal mode analysis, can identify the accessible motion space around a given equilibrium structure. The large magnitude, collective motions identified by these methods are often well aligned with the general direction of the expected conformational transitions. However, these motions cannot realistically be extrapolated beyond the local neighborhood of the starting conformation. In this article, the iterative cluster-NMA (icNMA) method is presented for traversing the energy landscape from a starting conformation to a desired goal conformation. This is accomplished by allowing the evolving geometry of the intermediate structures to define the local accessible motion space, and thus produce an appropriate displacement. Following the derivation of the icNMA method, a set of sample simulations are performed to probe the robustness of the model. A detailed analysis of Β1,4-galactosyltransferase-T1 is also given, to highlight many of the capabilities of icNMA. Remarkably, during the transition, a helix is seen to be extended by an additional turn, emphasizing a new unknown role for secondary structures to absorb slack during transitions. The transition pathway for adenylate kinase, which has been frequently studied in the literature, is also discussed. Proteins 2009. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/61529/1/22200_ftp.pd

    A Chemoenzymatic Approach toward the Rapid and Sensitive Detection of O-GlcNAc Posttranslational Modifications

    Get PDF
    We report a new chemoenzymatic strategy for the rapid and sensitive detection of O-GlcNAc posttranslational modifications. The approach exploits the ability of an engineered mutant of β-1,4-galactosyltransferase to selectively transfer an unnatural ketone functionality onto O-GlcNAc glycosylated proteins. Once transferred, the ketone moiety serves as a versatile handle for the attachment of biotin, thereby enabling chemiluminescent detection of the modified protein. Importantly, this approach permits the rapid visualization of proteins that are at the limits of detection using traditional methods. Moreover, it bypasses the need for radioactive precursors and captures the glycosylated species without perturbing metabolic pathways. We anticipate that this general chemoenzymatic strategy will have broad application to the study of posttranslational modifications

    Applications of Site-Specific Labeling to Study HAMLET, a Tumoricidal Complex of α-Lactalbumin and Oleic Acid

    Get PDF
    umor cells), and its tumoricidal activity has been well established.-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules.We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity

    Percutaneous management of coronary embolism with prosthetic heart valve thrombosis after Bentall's procedure

    Get PDF
    We describe a young male who had undergone a Bentall's procedure seven years ago presenting with acute severe chest pain. He was diagnosed to have coronary embolism from prosthetic heart valve thrombosis. Multiple treatment strategies for the patient were available and we briefly discuss the merits of each of them. We also describe the encountered difficulties in the percutaneous revascularization procedure
    corecore