19 research outputs found

    The contribution of each leg to bipedal balance control

    Get PDF
    Maintaining balance is a task that healthy adult humans perform effortlessly throughout the day. However, when people age, or when they develop a neurological disease (e.g. Parkinson’s disease; PD) the risk of a fall increases, showing the complexities of maintaining balance. In this thesis, I investigated how both legs work together to maintain balance, both in healthy subjects and in people with PD.\ud Chapter 1 provides a general introduction and introduces the research questions. Chapter 2 reviews the state of the art regarding gait and balance research in PD. It confirmed the high risk of falling in PD patients and it suggested that this could be due to asymmetries in motor performance, impaired\ud integration of sensory signals and a difficulty of switching between sensory modalities.\ud Chapter 3 describes a newly developed method to identify the balance control contribution of the hip and ankle joints of both legs separately, using closed‐loop system identification methods. Two separate mechanical perturbations were applied and the participants’ responses were determined with a dual forceplate and motion capture. The method was successfully applied in healthy subjects and a PD patient and showed that multisegmental balance control can be reliably identified using two independent perturbations.\ud Chapters 4, 5 and 6 focused on the balance control contribution of each leg in PD patients. It was established that balance control can be asymmetrical in PD patients. However, it seemed that asymmetrical balance control was not related to clinical outcome measures such as freezing of gait. Interestingly, it was shown that PD patients can compensate for their most affected leg, by increasing\ud the balance control contribution of the least affected leg. This could paradoxically increase the balance asymmetry.\ud Chapter 7 investigated whether healthy subjects are capable to suppress erroneous sensory information of each leg separately. To this end, the balance of healthy volunteers was perturbed by rotating the support surface of each foot through the ankle joint axis. The results showed that subjects suppressed\ud the sensory information of the most perturbed leg, independent of the other leg.\ud Chapter 8 discusses the general findings of this thesis

    Transcranial Direct Current Stimulation of the Leg Motor Cortex Enhances Coordinated Motor Output During Walking With a Large Inter-Individual Variability

    Get PDF
    Background Transcranial direct current stimulation (tDCS) can augment force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking and whether electrode configuration influences these effects. Objective We investigated the effect of tDCS using different electrode configurations on coordinated force production during walking in a group of healthy subjects and chronic stroke survivors. Methods Ten healthy subjects and ten chronic stroke survivors participated in a randomized double-blinded crossover study. Subjects walked on an instrumented treadmill before and after 10 minutes of uni-hemispheric (UNI), dual-hemispheric (DUAL) or sham tDCS applied to the primary motor cortex. Results tDCS responses showed large inter-individual variability in both subject populations. In healthy subjects tDCS enhanced the coordinated output during walking as reflected in an increased positive work generation during propulsion. The effects of DUAL tDCS were clearer but still small (4.4% increase) compared to UNI tDCS (2.8% increase). In the chronic stroke survivors no significant effects of tDCS in the targeted paretic leg were observed. Conclusions tDCS has potential to augment multi-joint coordinated force production during walking. The relative small contribution of the motor cortex in controlling walking might explain why the observed effects are rather small. Furthermore, a better understanding of the inter-individual variability is needed to optimize the effects of tDCS in healthy but especially stroke survivors. The latter is a prerequisite for clinical applicability

    RG flows from Spin(7), CY 4-fold and HK manifolds to AdS, Penrose limits and pp waves

    Get PDF
    We obtain explicit realizations of holographic renormalization group (RG) flows from M-theory, from E^{2,1} \times Spin(7) at UV to AdS_4 \times \tilde{S^7} (squashed S^7) at IR, from E^{2,1} \times CY4 at UV to AdS_4 \times Q^{1,1,1} at IR, and from E^{2,1} \times HK (hyperKahler) at UV to AdS_4 \times N^{0,1,0} at IR. The dual type IIA string theory configurations correspond to D2-D6 brane systems where D6 branes wrap supersymmetric four-cycles. We also study the Penrose limits and obtain the pp-wave backgrounds for the above configurations. Besides, we study some examples of non-supersymmetric and supersymmetric flows in five-dimensional gauge theories.Comment: 42 pages, 6 eps figures, typos and misprints correcte

    Balance asymmetry in Parkinson's disease and its contribution to freezing of gait

    Get PDF
    Contains fulltext : 136892.pdf (publisher's version ) (Open Access)Balance control (the ability to maintain an upright posture) is asymmetrically controlled in a proportion of patients with Parkinson's disease. Gait asymmetries have been linked to the pathophysiology of freezing of gait. We speculate that asymmetries in balance could contribute to freezing by a) hampering the unloading of the stepping leg and/or b) leading to a preferred stance leg during gait, which then results in asymmetric gait. To investigate this, we examined the relationship between balance control and weight-bearing asymmetries and freezing. We included 20 human patients with Parkinson (tested OFF medication; nine freezers) and nine healthy controls. Balance was perturbed in the sagittal plane, using continuous multi-sine perturbations, applied by a motion platform and by a force at the sacrum. Applying closed-loop system identification techniques, relating the body sway angle to the joint torques of each leg separately, determined the relative contribution of each ankle and hip joint to the total amount of joint torque. We also calculated weight-bearing asymmetries. We determined the 99-percent confidence interval of weight-bearing and balance-control asymmetry using the responses of the healthy controls. Freezers did not have larger asymmetries in weight bearing (p = 0.85) nor more asymmetrical balance control compared to non-freezers (p = 0.25). The healthy linear one-to-one relationship between weight bearing and balance control was significantly different for freezers and non-freezers (p = 0.01). Specifically, non-freezers had a significant relationship between weight bearing and balance control (p = 0.02), whereas this relation was not significant for freezers (p = 0.15). Balance control is asymmetrical in most patients (about 75 percent) with Parkinson's disease, but this asymmetry is not related to freezing. The relationship between weight bearing and balance control seems to be less pronounced in freezers, compared to healthy controls and non-freezers. However, this relationship should be investigated further in larger groups of patients

    Gait disorders and balance disturbances in Parkinson's disease: clinical update and pathophysiology.

    No full text
    Contains fulltext : 70210.pdf (publisher's version ) (Closed access)PURPOSE OF REVIEW: Gait disorders and balance impairments are one of the most incapacitating symptoms of Parkinson's disease. Here, we discuss the latest findings regarding epidemiology, assessment, pathophysiology and treatment of gait and balance impairments in Parkinson's disease. RECENT FINDINGS: Recent studies have confirmed the high rate and high risk of falls of patients with Parkinson's disease. Therefore, it is crucial to detect patients who are at risk of falling and how to prevent falls. Several studies have shown that multiple balance tests improve the prediction of falls in Parkinson's disease. Difficulty turning may be caused by axial rigidity, affected interlimb coordination and asymmetries. Turning difficulties are easily assessed by timed performance and the number of steps during a turn. Impaired sensorimotor integration, inability of switching between sensory modalities and lack of compensatory stepping may all contribute to the high incidence of falls in patients with Parkinson's disease. Similarly, various studies highlighted that pharmacotherapy, neurosurgery and physiotherapy may adversely affect balance and gait in Parkinson's disease. SUMMARY: Insights into the pathophysiology of Parkinson's disease continue to grow.At the same time, it is becoming clear that some patients may in fact deteriorate with treatment. Future research should focus on the development and evaluation of multifactorial fall prevention strategies

    Assessment of postural asymmetry in mild to moderate Parkinson's disease

    No full text
    Item does not contain fulltextAsymmetry of symptoms of Parkinson's disease is clinically most evident for appendicular impairments. For axial impairments such as freezing of gait, asymmetry is less obvious. To date, asymmetries in balance control in PD patients have seldom been studied. Therefore, in this study we investigated whether postural control can be asymmetrically affected in mild to moderate PD patients. Seventeen PD patients were instructed to stand as still and symmetrically as possible on a dual force-plate during two trials. Dynamic postural asymmetry was assessed by comparing the centre-of-pressure velocities between both legs. Results showed that four patients (24%) had dynamic postural asymmetry, even after correcting for weight-bearing asymmetry. Hence, this study suggests that postural control can be asymmetrical in early PD. However, future studies should investigate the prevalence of dynamic postural asymmetry, in a larger group of PD patients. It should also be further investigated whether this approach can be used as a tool to support the initial diagnosis or monitor disease progression, or as an outcome measure for interventions aimed at improving balance in PD

    A sensitivity analysis of an inverted pendulum balance control model

    No full text
    Balance control models are used to describe balance behavior in health and disease. We identified the unique contribution and relative importance of each parameter of a commonly used balance control model, the Independent Channel (IC) model, to identify which parameters are crucial to describe balance behavior. The balance behavior was expressed by transfer functions (TFs), representing the relationship between sensory perturbations and body sway as a function of frequency, in terms of amplitude (i.e., magnitude) and timing (i.e., phase). The model included an inverted pendulum controlled by a neuromuscular system, described by several parameters. Local sensitivity of each parameter was determined for both the magnitude and phase using partial derivatives. Both the intrinsic stiffness and proportional gain shape the magnitude at low frequencies (0.1–1 Hz). The derivative gain shapes the peak and slope of the magnitude between 0.5 and 0.9 Hz. The sensory weight influences the overall magnitude, and does not have any effect on the phase. The effect of the time delay becomes apparent in the phase above 0.6 Hz. The force feedback parameters and intrinsic stiffness have a small effect compared with the other parameters. All parameters shape the TF magnitude and phase and therefore play a role in the balance behavior. The sensory weight, time delay, derivative gain, and the proportional gain have a unique effect on the TFs, while the force feedback parameters and intrinsic stiffness contribute less. More insight in the unique contribution and relative importance of all parameters shows which parameters are crucial and critical to identify underlying differences in balance behavior between different patient groups.Biomechatronics & Human-Machine Contro

    The Delirium Interview as a new reference standard in studies on delirium assessment tools.

    No full text
    BACKGROUND: The reference standard in studies on delirium assessment tools is usually based on the clinical judgment of only one delirium expert and may be concise, unstandardized, or not specified at all. This multicenter study investigated the performance of the Delirium Interview, a new reference standard for studies on delirium assessment tools allowing classification of delirium based on written reports. METHODS: We tested the diagnostic accuracy of our standardized Delirium Interview by comparing delirium assessments of the reported results with live assessments. Our reference, the live assessment, was performed by two delirium experts and one well-trained researcher who registered the results. Their delirium assessment was compared to the majority vote of three other independent delirium experts who judged the rapportage of the Delirium Interview. Our total pool consisted of 13 delirium experts with an average of 13 ± 8 years of experience. RESULTS: We included 98 patients (62% male, mean age 69 ± 12 years), of whom 56 (57%) intensive care units (ICUs) patients, 22 (39%) patients with a Richmond Agitation Sedation Scale (RASS) < 0 and 26 (27%) non-verbal assessments. The overall prevalence of delirium was 28%. The Delirium Interview had a sensitivity of 89% (95% confidence interval [CI]: 71%-98%) and specificity of 82% (95% CI: 71%-90%), compared to the diagnosis of an independent panel of two delirium experts and one researcher who examined the patients themselves. Negative and positive predictive values were 95% (95% CI: 86%-0.99%), respectively, 66% (95% CI: 49%-80%). Stratification into ICU and non-ICU patients yielded similar results. CONCLUSION: The Delirium Interview is a feasible reference method for large study cohorts evaluating delirium assessment tools since experts could assess delirium with high accuracy without seeing the patient at the bedside
    corecore