3,238 research outputs found
Doug Altman, medical statistician par excellence: What can radiologists learn from his legacy?
This narrative review describes our experience of working with Doug Altman, the most highly cited medical statistician in the world. Doug was particularly interested in diagnostics, and imaging studies in particular. We describe how his insights helped improve our own radiological research studies and we provide advice for other researchers hoping to improve their own research practice
EROs found behind lensing clusters: II.Empirical properties, classification, and SED modelling based on multi-wavelength observations
We study the properties and nature of extremely red galaxies (ERO, R-K>5.6)
found behind two lensing clusters and compare them with other known galaxy
populations. New HST/ACS observations, Spitzer IRAC and MIPS, and Chandra/ACIS
observations of the two lensing clusters Abell 1835 and AC114 contemplate our
earlier optical and near-IR observations and have been used to study extremely
red objects (EROs) in these deep fields. We have found 6 and 9 EROs in Abell
1835 and AC114. Several (7) of these objects are undetected up to the I and/or
z band, and are hence ``optical'' drop-out sources. The photometric redshifts
of most of our sources (80%) are z~0.7-1.5. According to simple colour-colour
diagrams the majority of our objects would be classified as hosting old stellar
populations. However, there are clear signs of dusty starbursts for several
among them. These objects correspond to the most extreme ones in R-K colour. We
estimate a surface density of (0.97+-0.31) arcmin-2 for EROs with (R-K>5.6) at
K<20.5. Among our 15 EROs 6 (40 %) also classify as distant red galaxies
(DRGs). 11 of 13 EROs with available IRAC photometry also fulfil the selection
criteria for IRAC selected EROs (IEROs) of Yan et al. (2004). SED modelling
shows that ~ 36 % of the IEROs in our sample are luminous or ultra-luminous
infrared galaxies ((U)LIRG). Some very red DRGs are found to be very dusty
starbursts, even (U)LIRGs, as also supported by their mid-IR photometry. No
indication for AGNs is found, although faint activity cannot be excluded for
all objects. From mid-IR and X-ray data 5 objects are clearly classified as
starbursts. The derived properties are quite similar to those of DRGs and
IEROs, except for 5 extreme objects in terms of colours, for which a very high
extinction (Av>3) is found.Comment: 20 pages, 10 figures, accepted for publication in A&
ALMA detection of [CII] 158 micron emission from a strongly lensed z=2 star-forming galaxy
Our objectives are to determine the properties of the interstellar medium
(ISM) and of star-formation in typical star-forming galaxies at high redshift.
Following up on our previous multi-wavelength observations with HST, Spitzer,
Herschel, and the Plateau de Bure Interferometer (PdBI), we have studied a
strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS
J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the
main coolants of the ISM. [CII] emission from the southern part of this galaxy
is detected at 10 . Taking into account strong gravitational lensing,
which provides a magnification of , the intrinsic lensing-corrected
[CII]158 micron luminosity is . The observed
ratio of [CII]-to-IR emission, , is found to be similar to that in nearby galaxies. The same also
holds for the observed ratio , which is
comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at
low redshift. We utilize strong gravitational lensing to extend diagnostic
studies of the cold ISM to an order of magnitude lower luminosity () and SFR than previous work at high redshift.
While larger samples are needed, our results provide evidence that the cold ISM
of typical high redshift galaxies has physical characteristics similar to
normal star forming galaxies in the local Universe.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy &
Astrophysics, Letter
Nitrous Oxide in the Atmosphere: First Measurements of a Lower Thermospheric Source
Nitrous oxide (N2O) is an important anthropogenic greenhouse gas, as well as one of the most significant anthropogenic ozone-depleting substances in the stratosphere. The satellite-based instrument Atmospheric Chemistry Experiment-Fourier Transform Spectrometer has been observing the Earth\u27s limb since 2004 and derives profiles of N2O volume mixing ratios in the upper troposphere to the lower thermosphere. The resulting climatology shows that N2O is continuously produced in the lower thermosphere via energetic particle precipitation and enhanced N2O is present at all latitudes, during all seasons. The results are consistent with an N2O production source peaking near or above 94 km via low-energy particles, as well as a polar wintertime source near 70 km via medium energy particles. N2O produced in the polar upper atmosphere descends each winter to as far down as âŒ40 km. ©2016. American Geophysical Union
Water Vapour Variability in the High-Latitude Upper Troposphere- Part 2: Impact of Volcanic Eruptions
The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellitebased remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12)% increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of similar to 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by windblown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade
The first Frontier Fields cluster: 4.5{\mu}m excess in a z~8 galaxy candidate in Abell 2744
We present in this letter the first analysis of a z~8 galaxy candidate found
in the Hubble and Spitzer imaging data of Abell 2744, as part of the Hubble
Frontier Fields legacy program. We applied the most commonly-used methods to
select exceptionally high-z galaxies by combining non-detection and
color-criteria using seven HST bands. We used GALFIT on IRAC images for fitting
and subtracting contamination of bright nearby sources. The physical properties
have been inferred from SED-fitting using templates with and without nebular
emission. This letter is focussed on the brightest candidate we found
(m=26.2) over the 4.9 arcmin field of view covered by the WFC3.
It shows a non-detection in the ACS bands and at 3.6{\mu}m whereas it is
clearly detected at 4.5{\mu}m with rather similar depths. This break in the
IRAC data could be explained by strong [OIII]+H{\beta} lines at z~8 which
contribute to the 4.5{\mu}m photometry. The best photo-z is found at
z~8.0, although solutions at low-redshift (z~1.9) cannot be
completely excluded, but they are strongly disfavoured by the SED-fitting work.
The amplification factor is relatively small at {\mu}=1.490.02. The Star
Formation Rate in this object is ranging from 8 to 60 Mo/yr, the stellar mass
is in the order of M=(2.5-10) x 10Mo and the size is
r~0.350.15 kpc. This object is one of the first z~8 LBG candidates showing
a clear break between 3.6{\mu}m and 4.5{\mu}m which is consistent with the IRAC
properties of the first spectroscopically confirmed galaxy at a similar
redshift. Due to its brightness, the redshift of this object could potentially
be confirmed by near infrared spectroscopy with current 8-10m telescopes. The
nature of this candidate will be revealed in the coming months with the arrival
of new ACS and Spitzer data, increasing the depth at optical and near-IR
wavelengths.Comment: 4 pages, 2 figures, Accepted for publication in Astronomy and
Astrophysics Letter
- âŠ