50 research outputs found

    A Comparison Between the Compressive Strength and the Dynamic Properties of Concrete as a Function of Time

    Get PDF
    The purpose of this study was to examine and compare the correlation between the compressive strength of a mass concrete mix and that concrete’s dynamic properties, specifically, shear wave velocity. Several methods, including static and dynamic tests, were used to determine the concrete’s physical properties of compressive strength, modulus of elasticity, both static and dynamic, and shear wave velocity. It has been found that, for the specific concrete analyzed, there is a correlation between the compressive strength and dynamic properties as well as a correlation between the static and dynamic moduli. The data found in this study shows that dynamic properties of this concrete mix can be determined and obtained through the use of standard tests and attainment of adequate compressive strength, respectively

    Phase Space Dissimilarity Measures for Structural Health Monitoring

    Get PDF
    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results

    Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life

    Get PDF
    BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (approximately 1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets

    Problematizing fit and survival: transforming the law of requisite variety through complexity misalignment

    Get PDF
    The law of requisite variety is widely employed in management theorizing and is linked with core strategy themes such as contingency and fit. We reflect upon requisite variety as an archetypal borrowed concept. We contrast its premises with insights from the institutional literature and commitment literature, draw propositions that set boundaries to its applicability, and review the ramifications of what we call “complexity misalignment.” In this way we contradict foundational assumptions of the law, problematize adaptation- and survival-centric views of strategizing, and theorize the role of human agency in variously complex regimes

    A Collection of New Studies Using Existing and Proposed Techniques and Instrumentation for Nondestructive Testing and Analysis of Concrete Materials and Structures

    Get PDF
    A variety of studies were performed using existing and newly proposed techniques and instrumentation to further the understanding of nondestructive testing of concrete. A new combined stress wave propagation method was developed that combined the existing methods of the spectral analysis of surface waves, impact echo, and free-free resonant column experimental and analysis techniques. The method was used to determine the stiffness profile and location of embedded voids in a concrete tunnel lining modeled as a three layer concrete slab. A new equation was proposed that predicted the level of damage of concrete samples based on the functions of the change in first mode longitudinal frequency and the absorption of energy during cyclic loading to failure. During this study, new instrumentation was developed that aided in the dynamic stiffness measurements during the cyclic loading. A comparison of the static and dynamic Young’s modulus was performed. It was found that the ratio of these two moduli depend on a concrete’s strength and damping properties as well as the age of the specimen. A new equation was proposed using these three properties to determine the ratio of static to dynamic Young’s modulus. An experimental program was performed on samples of high performance self-consolidating concrete (HPSCC). The HPSCC exceeded expected values of strength and stiffness over that of regular high performance concrete. Finally, a comparison of prestress losses in prestressed bridge girders fabricated using the HPSCC was conducted. Prestress losses were measured and calculated using the American Association of State Highway and Transportation Officials (AASHTO) LRFD 2004 and 2007 Specifications. It was determined that the AASHTO LRFD 2007 Specifications most accurately predict the measured prestress losses

    Development of a Nondestructive Impulse Device and Damage Model for Unreinforced Concrete

    Get PDF
    Unconstrained compression waves were measured using a newly developed, nondestructive, short impulse excitation device developed for long-term structural health monitoring. The measurements, using this innovative device, were used to determine the variation in the first longitudinal modal frequency as a function of loading magnitude and loading cycles to failure of various concrete mixes. Longitudinal frequency and cumulative energy variations were found to be a function of concrete compressive strength. These results imply that higher-strength concrete more easily absorbs energy and restricts the growth of microcracks. Based on the results, a new damage model is proposed that was shown to correlate with measured values to within 7%. This proposed model was found to have a closer correlation than Miner’s hypothesis and damage index models from other reviewed research

    Modeling the effects of cyclodextrin on intracellular membrane vesicles from Cos-7 cells prepared by sonication and carbonate treatment

    No full text
    Cholesterol has important functions in the organization of membrane structure and this may be mediated via the formation of cholesterol-rich, liquid-ordered membrane microdomains often referred to as lipid rafts. Methyl-beta-cyclodextrin (cyclodextrin) is commonly used in cell biology studies to extract cholesterol and therefore disrupt lipid rafts. However, in this study we reassessed this experimental strategy and investigated the effects of cyclodextrin on the physical properties of sonicated and carbonate-treated intracellular membrane vesicles isolated from Cos-7 fibroblasts. We treated these membranes, which mainly originate from the trans-Golgi network and endosomes, with cyclodextrin and measured the effects on their equilibrium buoyant density, protein content, represented by the palmitoylated protein phosphatidylinositol 4-kinase type IIα, and cholesterol. Despite the reduction in mass stemming from cholesterol removal, the vesicles became denser, indicating a possible large volumetric decrease, and this was confirmed by measurements of hydrodynamic vesicle size. Subsequent mathematical analyses demonstrated that only half of this change in membrane size was attributable to cholesterol loss. Hence, the non-selective desorption properties of cyclodextrin are also involved in membrane size and density changes. These findings may have implications for preceding studies that interpreted cyclodextrin-induced changes to membrane biochemistry in the context of lipid raft disruption without taking into account our finding that cyclodextrin treatment also reduces membrane size
    corecore